Hostname: page-component-788cddb947-jbjwg Total loading time: 0 Render date: 2024-10-19T19:14:50.419Z Has data issue: false hasContentIssue false

Synthesis and Characterization of Surface Protected Nanocrystalline Particles of Titania

Published online by Cambridge University Press:  10 February 2011

E. Scolan
Affiliation:
Laboratoire de Chimie de la Matière Condensée, UMR CNRS 7574, Université Pierre et Marie Curie, 4 place Jussieu, 75252 PARIS Cedex 05, France - clems@ccr.jussieu.fr
C. Sanchez
Affiliation:
Laboratoire de Chimie de la Matière Condensée, UMR CNRS 7574, Université Pierre et Marie Curie, 4 place Jussieu, 75252 PARIS Cedex 05, France - clems@ccr.jussieu.fr
Get access

Abstract

Monodisperse non-aggregated nanoparticles of titania are obtained through hydrolysis at 60°C of titanium butoxide in the presence of acetylacetone and para-toluene sulfonic acid. After drying the resulting xerosols can be dispersed without aggregation in water-alcoholic or alcoholic solutions. The characterizations of the nanoparticles have been carried out by using quasi-elastic light scattering (QELS), 13C 1H in solution and X-ray diffraction, TEM, TG-DTA, 13C CP-MAS NMR in the solid state. The mean size of the anatase oxide core can be adjusted in the I to 5 nanometer range by a careful tuning of the synthetic conditions. The anatase particles are surrounded by acetylacetonato ligands, para-toluene sulfonate based species and water.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Brinker, C.J. and Scherrer, G., in Sol-Gel Science : The Physics and Chemistry of Sol-Gel Processing, (ed. Academic Press, San Diego, CA, 1990).Google Scholar
2 Livage, J., Henry, M. and Sanchez, C., Prog. Solid State Chem. 288, 259 (1988).10.1016/0079-6786(88)90005-2Google Scholar
3 Kallala, M., Sanchez, C. and Cabane, B., Phys. Rev. E. 48, 3692 (1993).10.1103/PhysRevE.48.3692Google Scholar
4 Sanchez, C., Livage, J., Henry, M. and Babonneau, F., J. Non-Cryst. Solids 100, 65 (1988).10.1016/0022-3093(88)90007-5Google Scholar
5 Debsikbar, J.C., J. Non-Cryst. Solids 87, 343 (1986).10.1016/S0022-3093(86)80007-2Google Scholar
6 Léaustic, A., Babonneau, F. and Livage, J., J. Non-Cryst. Solids 1, 248 (1989).Google Scholar
7 Ribot, F., Toledano, P. and Sanchez, C., Chem. Mater. 3, 759 (1991).10.1021/cm00016a035Google Scholar
8 Papet, P., Lebars, N., Baumard, J.F., Lecomte, A. and Dauger, A., J. Mater. Sci. 24, 3850 (1989).10.1007/BF01168946Google Scholar
9 Chatry, M., Henry, M., In, M., Sanchez, C. and Livage, J., J. Sol-Gel Sci. Technol. 1, 233 (1994).10.1007/BF00486166Google Scholar
10 Blanchard, J., Barboux-Dreuff, S., Maquet, J. and Sanchez, C., New J. Chem. 19, 929 (1995).Google Scholar
11 Blanchard, J., Schaudel, B., In, M. and Sanchez, C., Eur. J. Inorg. Chem., in press.Google Scholar
12 Hartmann, S.R. and Hahn, E.L., Phys. Rev. 128, 2042 (1962).10.1103/PhysRev.128.2042Google Scholar
13 Massiot, D., Thiele, H. and Germanus, A., Bruker Rep. 140, 43 (1994).Google Scholar
14 Pines, A., Gibby, M. G. and Waugh, J.S., Chem. Phys. 59, 569 (1973); F. Babonneau, J. Maquet, C. Bonhomme, R. Richter, G. Rower and D. Bahloul, Chem. Mater. 8, 1415 (1996).Google Scholar
15 Lorenz, A., Kickelbick, G. and Schubert, U., Chem. Mater. 9, 2551 (1997).10.1021/cm9702575Google Scholar
16 Peyre, V., Spalla, O., Belloni, L. and Nabavi, M., J. Colloid Interface Sci. 187, 184 (1997).10.1006/jcis.1996.4692Google Scholar
17 Spalla, O. and Kékicheff, P., J. Colloid Interface Sci. 192, 43 (1997).10.1006/jcis.1997.4964Google Scholar
18 «Powder Diffraction File» (J.C.P.D.S.-International Center for Diffraction Data, Swarthmore, PA, U.S.A., 1993) N°21-1272.Google Scholar