Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T14:23:56.727Z Has data issue: false hasContentIssue false

Theory of conductive filaments in threshold switches

Published online by Cambridge University Press:  07 July 2011

V. G. Karpov
Affiliation:
Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606, USA
M. Nardone
Affiliation:
Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606, USA
M. Simon
Affiliation:
Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606, USA
Get access

Abstract

We show that the average parameters of conductive filaments and the related characteristics of threshold switches can be described thermodynamically based on the system free energy. In particular, we derive analytical expressions for the filament radius as a function of applied bias, and its current-voltage characteristics, the observations of which have remained without mathematical description for about 30 years. Our theory is extendible to filament transients and allows for efficient numerical simulations of arbitrary switching structures. This new understanding may be important in the advancement of novel technologies that combine threshold switches with phase change memory, such as 3D architectures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bedeschi, F., Fackenthal, R., Resta, C., Donze, E. M., Jagasivamani, M., Buda, E. C., Pellizzer, F., Chow, D. W., Cabrini, A., Calvi, G., Faravelli, R., Fantini, A., Torelli, G., Mills, D., Gastaldi, R., and Casagrande, G., IEEE Journal of Solid-State Circuits 44, 217 (2009).Google Scholar
2. Adler, D., Henisch, H.K., and Mott, S.N., Rev. Mod. Phys. 50, 209 (1978).Google Scholar
3. Kau, D. C., Tang, S., Karpov, I. V., Dodge, R., Klehn, B., Kalb, J., Strand, J., Diaz, A., Leung, N., Wu, J., Lee, S., Langtry, T., Chang, K., Papagianni, C., Lee, J., Hirst, J., Erra, S., Flores, E., Righos, N., Castro, H. and Spadini, G., Proceedings of the IEEE IEDM, Baltimore (IEEE, New York, 2009), p. 617.Google Scholar
4. Ovshinsky, S. R., Phys. Rev. Lett. 21, 1450 (1968).Google Scholar
5. Petersen, K. E. and Adler, D., J. Appl. Phys. 47, 256 (1976).Google Scholar
6. Ridely, B. K., Proc. Phys. Soc. 82, 954 (1963).Google Scholar
7. Ross, J., Thermodynamics and Fluctuations Far from Equilibrium (Springer, New York, 2008), p. 119.Google Scholar
8. Redaelli, A., Pirovano, A., Benvenuti, A., and Lacaita, A. L., J. Appl. Phys. 103, 11 (2008).Google Scholar
9. Petersen, K. E. and Adler, D., J. Appl. Phys. 50, 5065 (1979).Google Scholar
10. Karpov, I. V., Mitra, M., Kau, D., Spadini, G., Kryukov, A. Y., and Karpov, V. G., Appl. Phys. Lett. 92, 173501 (2008); V. G. Karpov, Y. A. Kryukov, I. V. Karpov, and M. Mitra, Phys. Rev. B 78, 052201(2008).Google Scholar
11. Lifshitz, E. M. and Pitaevskii, L. P., Physical Kinetics (Elsevier, Amsterdam, Boston, 2008).Google Scholar
12. Karpov, V. G., Nardone, M., and Simon, M. J. Appl. Phys. 109 114507 (2011).Google Scholar
13. Weinberg, M. C. and Nelson, G. F., J. Non-Cryst. Solids 74, 177 (1985); C. Barrett, W. Nix, and A. Tetelmam, The Principles of Engineering Materials (Prentice-Hall, Englewood Cliffs, NJ, 1973); X. S. Miao, L. P. Shi, H. K. Lee, J. M. Li, R. Zhao, P. K. Tan, K. G. Lim, H. X. Yang, and T. C. Chong, Jpn. J. Appl. Phys., Part 1 45, 3955(2006).Google Scholar
14. Owen, A. E. and Robertson, J. M., IEEE Trans. Electron Devices ED-20, 105 (1973).Google Scholar
15. Mott, N. F. and Davis, E. A., Electronic Processes in Non-crystalline Materials (Clarendon Press, Oxford, 1979).Google Scholar