Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-10T07:48:32.818Z Has data issue: false hasContentIssue false

Thermal Stability of Supported Noble Metal Nanoclusters

Published online by Cambridge University Press:  01 February 2011

Galif Kutluk
Affiliation:
gkutluk@hiroshima.jst-plaza.jp, Hishima University, Hiroshima Synchrotron Radition Center, 2-313 kagamiyama, Higashi-Hiroshima, N/A, 739-0046, Japan, +81-82-424-6293, +81-82-424-6294
Shinya Yagi
Affiliation:
s-yagi@mail.nucl.nagoya-u.ac.jp, Nagoya University, School of engineering, Nagoya, N/A, 464-8603, Japan
Hirosuke Sumida
Affiliation:
sumida.h@mazda.co.jp, Mazda Motor Co., Technical Reserch Center, Fuchu, Hiroshima, 730-8670, Japan
Hirofumi Namatame
Affiliation:
Namatame@hiroshima-u.ac.jp, Hiroshima University, Hiroshima Synchrotron Radition Center, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
Masaki Taniguchi
Affiliation:
taniguch@hiroshima-u.ac.jp, Hiroshima University, Hiroshima Synchrotron Radition Center, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
Get access

Abstract

Highly dispersive and size controlled Pd and Pt nanoclusters have been synthesized by gas condensation and Arc plasma source. The morphology, crystallographic structures, electronic structure and the temperature dependence of chemical states of nanocluster were investigated by using TEM, AFM, EXAFS and XPS, respectively. The results show that non-passivized Pd nanoclusters with the size of 1.5~ 5.7nm are consisted with pure Pd core covered by highly oxidized PdO2 thin layer. The dioxide state PdO2 layers start to converting to Pd at 120°C and vanishing at 180°C in a reduction atmosphere.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Baletto, Francesca and Ferrando, Riccardo, Rev. Mod. Phys. 77 371 (2005).Google Scholar
2 Spatz, Joachim P., et. al., Langmuir 16, 407415 (2000).Google Scholar
3 Hövel, H., Grimm, B., Pollmann, M., and Reihl, B., Phys. Rev. lett., 81 4608 (1998)Google Scholar
4 Reinhard, D., Hall, B. D., Berthoud, P., Valkealahti, S., et. al., Phys. Rev. B 58 4917 (1998)Google Scholar
5 Yokozeki, A. and Stein, G. D., J. Appl. Phys. 49, 2224 (1978)Google Scholar
6 Rodriguez, Jose A., Campbell, Robert A., Goodman, D. Wayne, Surface Science 307–309, 377 (1994).Google Scholar
7 Johanek, V., Laurin, M., Grant, A. W., Kasemo, B., Henry, C. R., Libuda, J., Science 304, 1639 (2004).Google Scholar
8 Boyen, H.G., Kastle, G., Weigl, F., Koslowski, B., et. al., Science 297, 1533 (2001).Google Scholar
9 Min, B. K., Santra, A. K., and Goodman, D. W., J. Vac. Sci. Technol. B 21 2319 (2003)Google Scholar
10 Uruga, T., Tanida, H., Yoneda, Y., Takeshita, K., et. al. J. Synchrotron Rad. 6, 143 (1999).Google Scholar
11 Matsumura, Y., Shen, W. J., Ichihashi, Y. and Ando, H., Catalysis Letters 68, 181 (2000).Google Scholar
12 Brun, M., Berthet, A., Bertolini, J.C., J. Electron Spectrosc. Relat. Phenom., 104, 55 (1999).Google Scholar
13 Boyen, H.G., Ethirajan, A., Kastle, G., Weigl, F., and Ziemann, P., Phys. Rev. Lett., 94 016804–1 (2005).Google Scholar
14 Seidl, M., Meiwes-Broer, K.H. and Brack, M, J. Chem. Phys. 95, 1295 (1991).Google Scholar
15 Moulder, John F. et.al., Handbook of X-ray Photoelectron Spectroscopy, (1995)Google Scholar
16 Yudanov, IIya V., Sahnoun, Riadh, Neyman, Konstantin M., et. al., J. Chem. Phys., 117, 9887 (2002).Google Scholar