Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-17T13:06:25.526Z Has data issue: false hasContentIssue false

Thermophysical Properties of Bulk Metallic Glasses in the Stable and Undercooled Liquid – A Microgravity Investigation

Published online by Cambridge University Press:  17 March 2011

Hans-Jörg Fecht
Affiliation:
Materials Division, Ulm University, Albert-Einstein-Allee 47, D-89081 Ulm, GERMANY
Rainer K. Wunderlich
Affiliation:
Materials Division, Ulm University, Albert-Einstein-Allee 47, D-89081 Ulm, GERMANY
Stephen C. Glade
Affiliation:
Keck Laboratory of Enineering Materials California Institute of Technology, Pasadena, CA 91125, USA
William L. Johnson
Affiliation:
Keck Laboratory of Enineering Materials California Institute of Technology, Pasadena, CA 91125, USA
Get access

Abstract

The thermophysical properties in the stable and undercooled liquid phase of a series of Zr- based metallic glass forming alloys have been investigated under the condition of reduced gravity on board spacelab. Properties measured included the specific heat capacity and the enthalpy of fusion, the electrical resistivity, the total hemispherical emissivity, and the thermal transport properties. Results for the bulk metallic glass forming alloys indicate a pronounced change in chemical short range order in the liquid phase as function of temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Inoue, A., Ykohama, Y., Shinohara, Y. and Masumoto, T., Mat. Trans. JIM, 35, 923 (1994).Google Scholar
2. Inoue, A., Zhang, T. and Masumoto, T., Mater. Trans. JIM, 36, 391 (1995).Google Scholar
3. Lin, X. H. and Johnson, W.L., J. Appl. Phys 78, 6514 (1995).Google Scholar
4. Lin, X.H., Ph.D. thesis, California Institute of Technology, (1997).Google Scholar
5. Wunderlich, R. K. and Fecht, H.-J., Int. J. Thermophys. 17, 1203 (1996).Google Scholar
6. Wunderlich, R. K. and Fecht, H.-J., Z. Metallkd. 91, 552 (2000).Google Scholar
7. Lohöfer, G. and Egry, I.: Solidification 99, Hofmeister, W. H., Rogers, J. R., Sing, N. W., March, S. P., and Vorhees, P. W. eds., TMS Warrendale, pp. 65 (1999).Google Scholar
8. Fecht, H.-J. and Johnson, W. L., Rev. Sci. Instr. 62, 1299 (1991).Google Scholar
9. Fecht Fecht, H.-J., Phil. Mag. B 76, 495 (1997).Google Scholar
10. Sommer, F., Mat. Sci. Eng. A 226–228, 757 (1997).Google Scholar
11. Ziman, J. M., Phil. Mag. 6, 1013 (1961).Google Scholar
12. Cote, P.J. and Meisel, L. V., Phys. Rev. Lett 39, 102 (1987).Google Scholar
13. Mooij, J. H., Phys. Stat. Solidi A17, 521 (1973).Google Scholar
14. Evans, R., Greenwood, D. A., and Lloyd, P., Phys. Lett. 35A, 57 (1971).Google Scholar
15. Mechler, S. and Macht, M. P., Hahn-Meitner-Institut Berlin, private communication.Google Scholar
16. Damaschke, B. and Samwer, K.: Appl. Phys. Lett. 75, 2220 (1999).Google Scholar
17. Sato, S., Matsubara, E., Waseda, Y., Zhang, T. ans Inoue, A., MRS symposium Proceedings, 554, Bulk Metallic Glasses, eds. Johnson, W. L. and Inoue, A., Warrendale 1998, pp.101106.Google Scholar
18. Schuhmacher, H., Herr, U., Oelgeschléger, D., Travese, A. and Samwer, K., J. Appl. Phys. 88, 155 (1997).Google Scholar
19. Parker, W. J., Abbott, G. C., Symposium on Thermal Radiation of Solids (Katzoff, S. ed.) NASA SP-55, pp.11 (1965).Google Scholar
20. Roesner-Kuhn, M. and Frohberg, M. G., Research Report to the German Space Agency, April 2000, DLR.Google Scholar