Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-12T02:55:52.722Z Has data issue: false hasContentIssue false

Thin Film Optical Switching Materials

Published online by Cambridge University Press:  15 February 2011

J. F. DE Natale*
Affiliation:
Rockwell Science Center, 1049 Camino Dos Rios, Thousand Oaks, CA 91358
Get access

Abstract

The oxides of vanadium, VO2 and V2O3, are attractive materials for optical switching applications due to their large excursions in both electrical and IR optical properties. These materials can be prepared in thin film form by a number of deposition techniques, making them compatible with optical and electrical device applications. The performance of these films is a sensitive function of microstructure and processing conditions. The effects of these variables are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kucharczyk, D., and Niklewski, T., J. Appl. Cryst. 12, 370 (1979).Google Scholar
2. Paul, W., Mat. Res. Bull. 5, 691 (1970).Google Scholar
3. Granqvist, C.G., Thin Solid Films 193/194, 730 (1990).Google Scholar
4. Jorgenson, G. “Electrochromic and Thermochromic Materials for Solar Energy Applications with Emphasis on Niobium and Vanadium Oxides,” LBL Report 18299 (August, 1984).Google Scholar
5. Jin, P. and Tanemura, S., Jpn J. Appl. Phys. 33, 1478 (1994).Google Scholar
6. Blodgett, D.W., Lange, C.H., and McNally, P.J., SPIE Vol. 1969, p. 349.Google Scholar
7. Sovero, E., Deakin, D., Higgins, J.A., DeNatale, J.F., and Pittman, S., IEEE GaAs IC Symposium, p. 101 (1990).Google Scholar
8. Goodenough, J.B., J. Solid State Chemistry 3, 490 (1971).Google Scholar
9. Fillingham, P.J., J. Appl. Phys. 38 (12), 4823 (1967).Google Scholar
10. Hayashi, Y., et al., Phys. Stat. Sol. 39, 189 (1970A).Google Scholar
11. Hayashi, Y., et al., Crystal Lattice Defects 1, 185 (1970B).Google Scholar
12. Eden, D.D., Optical Engineering 20 (3), 377 (1981).Google Scholar
13. Becker, M.F., et al., Springer Series in Chem. Phys., V.4, Picosecond Phenomena, p. 236 (1978).Google Scholar
14. Zylbersztejn, A., et al., Physics Letters 54A(2), 145 (1975).Google Scholar
15. Becker, M.F., Buckman, A.B., Walser, R.M., Lepine, T., Georges, P., and Bruin, A., Appl. Phys. Lett. 65(12), 1507 (1994).Google Scholar
16. Allen, P.B., et al., Phys. Rev. B 48(7), 4359 (1993).Google Scholar
17. Feinleib, J. and Paul, W., Phys. Rev. 155(3), 841 (1067).Google Scholar
18. Hendrix, B.C., et al., J. Mater. Sci.:Materials in Electronics 3, 113 (1992).Google Scholar
19. Rosenbaum, T.F. and Carter, S.A., J. Solid State Chem. 88, 94 (1990).Google Scholar
20. Carter, S.A., et al., Phys. Rev. Lett. 67 (24), 3440 (1991).Google Scholar
21. Shivashankar, S.A., et al., J. Electrochem. Soc. 128(11), 2472 (1981).Google Scholar
22. McWhan, D.B., et al., J. de Physique 31, C1079 (1971).Google Scholar
23. Yethiraj, M., J. Solid State Chem. 88, 53 (1990).Google Scholar
24. Mattheiss, L.F., J. Phys.: Condens. Matter. 6, 6477 (1994).Google Scholar
25. DeNatale, J.F., et al., J. Appl. Phys. 66(12), 5844 (1989).Google Scholar
26. Case, F.C., Applied Optics 28(14), 2731 (1989).Google Scholar
27. Case, F.C., J. Vac. Sci. Technol. A 7(3), 1194 (1989).Google Scholar
28. Chain, E.E., J. Vac. Sci. Technol. A 4(3), 432 (1986).Google Scholar
29. Rogers, K.D., et al., J. Appl. Phys. 70(3), 1412 (1991).Google Scholar
30. Kusano, E. and Theil, J.A., J. Vac. Sci. Technol. A 7(3), 1314 (1989).Google Scholar
31. Partlow, D.P., Gurkovich, S.R., Radford, K.C., and Denes, L.J., J. Appl. Phys. 70(1), 443 (1991).Google Scholar
32. Borek, M., et al., Appl. Phys. Lett. 63(24), 3288 (1993).Google Scholar
33. Seifering, K.L., and Griffin, G.L., J. Electrochem. Soc. 136(3), 897 (1989).Google Scholar
34. Gannon, J.R., and Tilley, J.D., J. Solid State Chemistry 25, 301 (1978).Google Scholar
35. Wriedt, H.A., Bull. Alloy Phase Diagrams 10(3), 271 (1989).Google Scholar
36. Griffiths, C.H., and Eastwood, H.K., J. Appl. Phys. 45(5), 2201 (1974).Google Scholar
37. Marucco, J.F., et al., J. Mater.Sci. Lett. 5, 99 (1986).Google Scholar
38. Case, F.C., J. Vac. Sci. Technol. A 8(3), 1395 (1990).Google Scholar
39. Rossnagel, S.M., and Cuomo, J.J., Vacuum 38(2), 73 (1988).Google Scholar
40. Case, F.C., J. Vac. Sci. Technol. A 2, 1509 (1984).Google Scholar
41. Chain, E.E., J. Vac. Sci. Technol. A 5(4), 1836 (1987).Google Scholar
42. Hale, C.C.H., et al., Proceedings, SPIE Conf. Optical Thin Films and Applications, March 12–13, Hague, Netherlands, SPIE Vol. 1270 (Int. Soc. Opt. Eng., Bellingham, WA, 1990) pp. 222236.Google Scholar
43. Foster, C.M., et al., J. Appl. Phys. 73(6), 2841 (1993).Google Scholar
44. Chang, H.L.M., et al., Appl. Surf. Sci. 48/49, 12 (1991).Google Scholar
45. Guo, J., et al., Appl. Phys. Lett. 61(26), 3116 (1992).Google Scholar
46. Chang, H.L.M., et al., J. Mater. Res. 8(10), 2634 (1993).Google Scholar
47. Rozgonyi, G.A., and Polito, W.J., J. Electrochem. Soc. 115(1), 56 (1968).Google Scholar