Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-14T01:40:58.987Z Has data issue: false hasContentIssue false

Time Resolved Photoconduction Studies of Uniformly Doped and p-n Junction Si Nanowires

Published online by Cambridge University Press:  01 February 2011

Loucas Tsakalakos
Affiliation:
tsakalakos@research.ge.com, General Electric Global Research Center, Micro & Nano Structures Technologies, One Research Circle, KW-C1811, Niskayuna, NY, 12309, United States, 518-387-5715
Darryl Michael
Affiliation:
michael@research.ge.com, General Electric Global Research Center, Niskayuna, NY, 12309, United States
Jody Fronheiser
Affiliation:
fronheis@research.ge.com, General Electric Global Research Center, Niskayuna, NY, 12309, United States
Joleyn Balch
Affiliation:
balch@research.ge.com, General Electric Global Research Center, Niskayuna, NY, 12309, United States
Robert Wortman
Affiliation:
wortman@purdue.edu, General Electric Global Research Center, Niskayuna, NY, 12309, United States
Paul Wilson
Affiliation:
wilson@crd.ge.com, General Electric Global Research Center, Niskayuna, NY, 12309, United States
David White
Affiliation:
dwhite@crd.ge.com, General Electric Global Research Center, Niskayuna, NY, 12309, United States
Rolf Boone
Affiliation:
boone@research.ge.com, General Electric Global Research Center, Niskayuna, NY, 12309, United States
Stephen LeBoeuf
Affiliation:
leboeuf@crd.ge.com, General Electric Global Research Center, Niskayuna, NY, 12309, United States
Get access

Abstract

The time resolved and DC photoconduction characteristics of Si nanowire devices are described. Si nanowires with diameters ranging from 20-100 nm were grown using the vapor-liquid-solid (VLS) growth mechanism under standard conditions and devices were fabricated in a back-gate field effect transistor (FET) configuration using simple photolithography. It is shown that under certain biasing conditions, illumination with light from light emitting diodes with wavelengths ranging from 480 nm to 625 nm causes changes in current as high as 4%. On the other hand, illumination by a broadband incandescent source causes a ∼4.1% percent change in current. Photoconductive decay curves show bi- and tri-exponential behavior, indicative of multiple potential recombination mechanisms occurring within the Si nanowire devices. p-n doped Si nanowires show similar behavior. Studies under various drain and gate voltages provides insight into the proposed mechanism. It is argued that the Shottky barrier plays a strong role in the observed photoconduction process in these wires, as do transitions involving surface and deep level trap states.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Xu, Q. F., Schmidt, B., Prdhan, S., and Lipson, M., Nature, 435, 325 (2005).Google Scholar
2 Rong, H., Liu, A., Jones, R., Cohen, O., Hak, D., Nicolaescu, R., Fang, A. and Paniccia, M., Nature 433, 292294 (2005).Google Scholar
3 http://www.itrs.net/Links/2005ITRS/Home2005.htmGoogle Scholar
4 Wong, H.-S. Philip, Nanoelectronics: Nanotubes, Nanowires, Molecules, and Novel Concepts, in Proceedings of ESSCIRC, IEEE, 2005.Google Scholar
5 Chung, S.W., Yu, J–Y., and Heath, J.R., Appl. Phys. Lett. 76, 2068 (2000).Google Scholar
6 Cui, Y., Zhong, Z., Wang, D., Wang, W.U., and Lieber, C.M., Nano Lett. 3 149 (2003)Google Scholar
7 Freitag, M., Martin, Y., Misewich, J.A., Martel, R., Avouris, Ph., Nano Lett. 3(8); 1067 (2003).Google Scholar
8 Shim, M. and Siddons, G.P., Appl. Phys. Lett. 83, 3564 (2003).Google Scholar
9 Kind, H., Yan, H., Messer, B., Law, M., Yang, P., Adv. Mater. 14 (2), 158 (2002).Google Scholar
10 Han, S., Jin, W., Zhang, D., Tang, T., Li, C., Liu, X., Liu, Z., Lei, B., Zhou, C., Chemical Physics Letters 389, 176 (2004).Google Scholar
11 Ahn, Y., Dunning, J., Park, J., Nano Lett. 5(7), 1367 (2005).Google Scholar
12 Gu, Y., Romankiewicz, J.P., David, J. K., Lensch, J.L., Lauhon, L.J.,, Nano Lett. 6(5); 948 (2006).Google Scholar
13 Wagner, R. S., Ellis, W.C.,, Appl. Phys. Lett., 4, 89 (1964).Google Scholar
14 Bootsma, G. A. and Gassen, H. J., J. Cryst. Growth 10, 223 (1971)Google Scholar
15 Westwater, J., Gosain, D. P., Tomiya, S., and Usui, S., J. Vac. Sci. Technol. B 15, 554 (1997).Google Scholar
16 Cui, Y., Lauhon, L.J., Gudiksen, M.S., Wang, J., and Lieber, C.M., Appl. Phys. Lett.,78, 2214 (2001).Google Scholar
17 Chung, S.W., Yu, J-Y., and Heath, J.R., Appl. Phys. Lett. 76, 2068 (2000)Google Scholar
18 Peng, K.Q., Yan, Y.J., Gao, S.P., Zhu, J., Adv. Mater., 14, 1164 (2002)Google Scholar
19 Michael, Darryl J., Tsakalakos, Loucas, Wortman, Robert, Wilson, Paul, Boone, Rolf, in preparationGoogle Scholar
20 Stevenson, D.T. and Keyes, R.J., J. Appl. Phys. 26, 190 (1955).Google Scholar
21 Tsakalakos, L., Taylor, S.T., Corderman, R.R., Balch, J., Fronheiser, J, Proc. SPIE 6370, 637019 (2006).Google Scholar
22 Sze, S.M., Physics of Semiconductor Devices (John Wiley & Sonds, New York, 1981), pp. 812.Google Scholar