Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-22T06:12:01.293Z Has data issue: false hasContentIssue false

Transparent Conductive Oxide Less Flexible Dye-sensitized Solar Cells with Flat and Cylinder Shapes

Published online by Cambridge University Press:  03 January 2013

Jun Usagawa
Affiliation:
Kyushu Institute of Technology, 2-4, Hibikino, Wakamatsu-ku, Kitakyushu808-0196Japan
Byung-wook Park
Affiliation:
Kyushu Institute of Technology, 2-4, Hibikino, Wakamatsu-ku, Kitakyushu808-0196Japan
Yuhei Ogomi
Affiliation:
Kyushu Institute of Technology, 2-4, Hibikino, Wakamatsu-ku, Kitakyushu808-0196Japan
Shyam S. Pandey
Affiliation:
Kyushu Institute of Technology, 2-4, Hibikino, Wakamatsu-ku, Kitakyushu808-0196Japan
Shuzi Hayase
Affiliation:
Kyushu Institute of Technology, 2-4, Hibikino, Wakamatsu-ku, Kitakyushu808-0196Japan
Get access

Abstract

Transparent conductive oxide less flexible dye-sensitized solar cells (TCO-less DSC) with flat and cylinder shapes are reported. The cell consists of a plastic cover, a flexible titania/dye sheet back contacted with a metal mesh sheet, a gel electrolyte sheet, and Pt layer on a Ti sheet. How to increase the efficiency were discussed. We concluded that making a titania/dye layer on a metal mesh sheet thinner and using a thinner electrolyte layer were effective for increasing the efficiency. A flat TCO-less DSC with 6.1 % efficiency and a cylindrical TCO-less DSC with 5.1 % efficiency are reported.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Green, M. A., Emery, K., Hishikawa, Y., Warta, W., and Dunlop, E. D., Prog. Photovolt: Res. Appl., 20, 12 (2012).CrossRefGoogle Scholar
Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., and Pettersson, H., Chem. Rev, 110, 6595 (2010).CrossRefGoogle Scholar
Kroon, J. M., Bakker, N. J., Smit, H. J. P., Liska, P., Thampi, K. R., Wang, P., Zakeeruddin, S. M., Graetzel, M., Hinsch, A., Hore, S., Wurfel, U., Sastrawan, R., Durrant, J. R., Palomares, E., Pettersson, H., Gruszecki, T., Walter, J., Skupien, K., and Tulloch, G. E., Prog. Photovol., 15, 1 (2007).CrossRefGoogle Scholar
Kashiwa, Y., Yoshida, Y., and Hayase, S., Appl. Phys. Lett. 92, 033308 (2008).CrossRefGoogle Scholar
Fuke, N., Fukui, A., Chiba, Y., Komiya, R., Hamanaka, R., and Han, L., Jpn. J. Appl. Phys. 46, L420 (2007).CrossRefGoogle Scholar
Han, L., Koide, N., Chiba, Y., Islam, A., Komiya, R., Fuke, N., Fukui, A., and Yamanaka, R., Appl. Phys. Lett., 86, 213501 (2005).CrossRefGoogle Scholar
Beppu, T., Kashiwa, Y., Hayase, S., Kono, M., and Yamaguchi, Y., Jpn. J. Appl. Phys., 48, 061504 (2009).CrossRefGoogle Scholar
Huang, X., Shen, P., Zhao, B., Feng, X., Jiang, S., Li, H. C., and Tan, S., Sol. Energy Mater. Sol. Cells, 94, 1005 (2010).CrossRefGoogle Scholar
Wang, Y., Yang, H., Liu, Y., Wang, H., Shen, H., Yan, J., and Xu, H., Prog. Photovolt: Res. Appl., 8, 285 (2010).Google Scholar
Fan, X., Wang, F., Chu, Z., Chen, L., Zhang, C., Zou, D., Appl. Phys. Lett., 90, 073501 (2007).CrossRefGoogle Scholar
Miettunen, K., Halme, J., Toivola, M., and Lund, P., J.Phys. Chem. C., 112, 4011 (2008).CrossRefGoogle Scholar
Yoshida, Y., Pandey, S. S., Uzaki, K., Hayase, S., Kono, M., and Yamaguchi, Y., Appl. Phys. Lett., 94, 093301–1 (2009).CrossRefGoogle Scholar
Kang, M. G., Tyu, K. S., Chang, S. H., Park, N. G., Hong, J. S., and Kim, K-J., Bull. Korean Chem. Soc., 25, 742 (2004).Google Scholar