Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-27T05:20:55.563Z Has data issue: false hasContentIssue false

Why SiNx:H is the Preferred Gate Dielectric for Amorphous Si Thin Film Transistors (TFTS) and SiO2 is the Preferred Gate Dielectric for Polycrystalline Si TFTs

Published online by Cambridge University Press:  10 February 2011

Gerald Lucovsky
Affiliation:
Deptartments of Physics, Materials Science and Engineering,and Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695-8202
J.C. Phillips
Affiliation:
Lucent Bell Labs., Murray Hill, NJ 07974
Get access

Abstract

Constraint theory developed for bulk glasses and recently applied to thin films and single crystalline Si (C-Si) dielectric interfaces is extended in this paper to a-Si:H and polycrystalline-Si (poly-Si) dielectric interfaces in TFTs where it provides guidelines for device optimization. The constraining effects of network bonding forces are a linear function of the average bonding coordination, Nav. Nav ∼ 3 separates low-defect density networks as in Si02 (Nav =2.67), from highly-defective networks such as non-hydrogenated Si3N4 (Nay = 3.43). Nay ∼ 3 also separates device-quality from highly-defective Si-dielectric interfaces. These criteria are applied to Si-Si02 and Si-SiNx:H interfaces that are integral components of TFT devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Phillips, J.C., J. Non-Cryst. Solids 34, 153 (1979); J. Non-Cryst. Solids 47, 203 (1983).Google Scholar
[2] He, H. and Thorpe, M. F., Phys. Rev. Lett 54, 2107 (1985).Google Scholar
[3] Phillips, J.C., in Rigidity Theory and Applications, ed. by Thorpe, M.F. and Duxbury, P., (Michigan State University Press, East Lansing, 1999) to be published.Google Scholar
[4] Lucovsky, G. and Phillips, J.C., J. Non-Cryst. Solids 227, 1221 (1998).Google Scholar
[5] Merwe, J. H. Van der, J. Appl. Phys. 34, 123 (1963).Google Scholar
[6] Lucovsky, G., Wu, Y.. Niimi, H., Misra, V. and Phillips, J.C., Appl. Phys. Lett. 74 (April 5, 1999).Google Scholar
[7] Misra, V. et al. , submitted to IEEE Electron Device Trans. (1999).Google Scholar
[8] He, S. S., Stephens, D. J., Hanmaker, R. W. and Lucovsky, G., Mater. Res. Soc. Symp. Proc. 284, 413 (1993).Google Scholar
[9] He, S.S., Stephens, D.J. and Lucovsky, G., Mater. Res. Soc. Symp. Proc. 297, 871 (1993).Google Scholar
[10] He, S.S., Williams, M.J., Stephens, D.J. and Lucovsky, G., J. Non-Cryst. Solids 164–166, 731 (1993).Google Scholar
[11] Lucovsky, G., He, S.S., Williams, M.J., and Stephens, D., Microelectronic Engineering 25, 329 (1994).Google Scholar
[12] Parsons, G.N., Cusano, C. and Lucovsky, G., J. Vac. Sci. Technol. A5, 1655 (1987).Google Scholar
[13] Lucovsky, G., Yang, H. and Massoud, H.Z., J. Vac. Sci. Technol. B 16, 2191 (1998).Google Scholar
[14] Deane, S.C., Clough, F.J., Milne, W.I. and Powell, M.J., J. Appl. Phys. 73, 2895 (1993).Google Scholar
[15] Jing, Z., Lucovsky, G., and Whitten, J.L., J. Vac. Sci. Technol. B13, 1613 (1995).Google Scholar
[16] Jing, Z., Lucovsky, G. and Whitten, J.L, Mater. Res. Soc. Proc. 378, 851 (1995).Google Scholar
[17] Lucovsky, G., Jing, Z., and Lee, D. R., J. Vac. Sci. Technol. B 14, 2832 (1996).Google Scholar
[18] Lucovsky, G., Banerjee, A., Hinds, B., Claflin, B., Koh, K., and Yang, H., J. Vac. Sci. Tech. B 15, 1075 (1997).Google Scholar
[19] Lu, Z., Williams, M.J., Santos-Filho, P.F. and Lucovsky, G., J. Vac. Sci. Technol. A 13, 607 (1995).Google Scholar
[20] Lucovsky, G., Niimi, H., Wu, Y., Parker, C.G. and Hauser, J.R., J. Vac. Sci. Technol. A 16, 1721 (1998).Google Scholar