Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-15T23:44:16.787Z Has data issue: false hasContentIssue false

Xps Study of Ni-Fe Manganite Thermistor Material

Published online by Cambridge University Press:  16 February 2011

D. N. Braski
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831
N. R. Osborne
Affiliation:
University of Dayton Research Institute, Dayton, OH 45469
J. M. Zurbuchen
Affiliation:
Yellow Springs Instruments, Inc., Yellow Springs, OH 45387
Get access

Abstract

The resistivity of the as-fabricated thermistor material, nickel-iron-manganite, changes during initial aging in the temperature range of 150-300ºC before becoming stable.X-ray photoelectron spectroscopy (XPS) was used to determine if any valency change or chemical shift of the cations or oxygen occurred during aging. The goal of the study was to identify any ionic changes that might affect thermistor stability. The only observed changes in 2p3/2 peaks due to aging were those related to Ni ions; the same peaks for Mn, Fe, and the 0-Is peak were unchanged. The changes in the Ni 2p3/2 peak may possibly be related to: (a) the migration of Ni2+ ions from octahedral to tetrahedral sites, (b) subtle changes in the energy states of Ni2+ which promoted a more stable ionic structure, or (c) the presence of Ni3+ ions, some of which revert to Ni2s+.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

references

1.Kingery, W. D., Introduction to Ceramics. John Wiley & Sons, Inc., N.Y. (1963) p115.Google Scholar
2.Hashemi, T. and Brinkman, A. W., J. Mater. Res. Vol.7, No. 51278 (1992).Google Scholar
3.Foord, J. S., Jackman, R. B. and Allen, G. C., Phil Mag. A Vol. 49, No. 5657 (1984).Google Scholar
4.Brabers, V. A. M., Setten, F. M. van and Knapen, P. S. A., J. of Solid State Chem. 49, 93 (1983).Google Scholar
5.Ng, K. T. and Hercules, D. M., J. of Phys. Chem., Vol. 80, No. 19, 2094 (1976).Google Scholar
6.Baltzer, P. K. ad White, J. G., J. Appl. Phys., Vol.29, No. 3, 445 (1958).Google Scholar
7.Bhandage, G. T. and Keer, H. V., J. Phys. C: Solid State Phys., Vol. 9, 1325 (1976).Google Scholar
8.Macklen, E. D., J. Phys. Chem. Solids, Vol. 47, No. 11, 1073 (1986).Google Scholar
9.Moulder, J. F., Stickle, W. F., Sobol, P. E., and Bomben, K. D., Handbook of X-ray Photoelectron Spectroscopy, Ed. Chastain, J. (Perkin-Elmer, 1992).Google Scholar
10.Mclntyreand, N. S.Cook, M. G., Anal. Chem., Vol. 47, No. 13, 2208 (1975).Google Scholar
11.Evans, W. T. and Schlesinger, M., J. Electrochem. Sot., Vol 141, No. 1, 78 (1994).Google Scholar
12.Briggs, D. and Seah, M. P., Practical Surface Analysis. 2nd Edition. Vol. 1 - Auger and X-ray Photoelectron Spectroscopy, (John Wiley & Sons, N.Y., 1990) p.505.Google Scholar
13.Sinha, A. P. B., Sanjana, N. N. and Biswas, A. B., Acta Cryst. 10, 439 (1957).Google Scholar
14.Blatzer, P. K. and White, J. G., J, appl. Phys. 29, 445 (1958).Google Scholar
15.Larson, E. G., Arnott, R. J., Wickham, D. G., J. Phys. Chem Solids 23, 1771 (1962)Google Scholar
16.Vernon, G. A., Stucky, G. and Carlson, T. A., Inorg. Chem. 15, No. 2, 278 (1976).Google Scholar
17.Beard, B. C., Sandusky, H. W., Glancy, B. C. and Elban, W. L., Surface and Interface Anal. Vol. 20, 140 (1993).Google Scholar
18.More, K. L., Oak Ridge National Laboratory, private communication.Google Scholar
19.Brabers, V. A. M. and Terhell, J. C. J. M., Phys. Stat. Sol. (a) 69, 325 (1962).Google Scholar