Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-19T10:32:24.382Z Has data issue: false hasContentIssue false

X-ray Photoelectron and UV Photoyield Spectroscopic Studies on Structural and Electronic Properties of SrxBiyTa 2O9 Films

Published online by Cambridge University Press:  11 February 2011

Mitsue Takahashi
Affiliation:
Department of Physical Science, Graduate School of Engineering Science, Osaka University, 1–3 Machikaneyama-cho, Toyonaka, Osaka 560–8531, Japan
Minoru Noda
Affiliation:
Department of Physical Science, Graduate School of Engineering Science, Osaka University, 1–3 Machikaneyama-cho, Toyonaka, Osaka 560–8531, Japan
Masanori Okuyama
Affiliation:
Department of Physical Science, Graduate School of Engineering Science, Osaka University, 1–3 Machikaneyama-cho, Toyonaka, Osaka 560–8531, Japan
Get access

Abstract

Photoelectron spectra by X-ray photoelectron spectroscopy (XPS) and UV-photoyield spectroscopy (UV-PYS) have been analyzed to study O2-annealing effects on band diagrams of ferroelectric SrxBiyTa2O9 (SBT) thin films deposited by pulsed laser deposition (PLD) and metalorganic dcecomposition (MOD) methods. XPS studies on the annealed PLD-SBT film has shown a rapid shift in its Bi 4f core peaks from the oxidized to the metallic ones, as the film suffer Ar+ bombardment. Surface of the annealed film has exhibited lower Fermi level than the as-deposited one in UV-PYS. The result suggests O2-annealing can suppress leakage current through PLD-SBT films. The UV-PYS studies on MOD-SBT have shown almost the intrinsic Fermi levels before and after the additional annealing. The XPS studies have shown that the additional annealing is not effective to improve stabilities of (Bi2O2)2+ layers, once the film is baked and crystallized.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Paz de Araujo, C. A., Cuchiaro, J. D., McMillan, L. D., Scott, M. C. and Scott, J. F., Nature (London) 374, 627 (1995).Google Scholar
2. Kim, S.–H., Kim, D. J., Maria, J.–P., Kingon, A. I., Streiffer, S. K., Im, J., Auciello, O. and Krauss, A. R., Appl. Phys. Lett. 76, 496 (2000).Google Scholar
3. Kim, Y. T., Shin, D. S., Park, Y. K. and Choi, I.-H., J. Appl. Phys. 86, 3387 (1999).Google Scholar
4. Bu, S. D., Park, B. H., Kang, B. S., Kang, S. H., Noh, T. W. and Jo, W., Appl. Phys. Lett. 75, 1155 (1999).Google Scholar
5. Gutleben, C. D., Appl. Phys. Lett. 71, 23 (1997).Google Scholar
6. Hartmann, A. J., Lamb, R. N., Scott, J. F. and Gutleben, C. D., Integr. Ferroelectr. 18, 101 (1997).Google Scholar
7. Scott, J. F., Jpn. J. Appl. Phys. 38, 2272 (1999).Google Scholar
8. Watanabe, K., Hartmann, A. J., Lamb, R. N., Craig, R. P., Thurgate, S. M. and Scott, J. F., Jpn. J. Appl. Phys. 39, L309 (2000).Google Scholar
9. Kodama, K., Takahashi, M., Ricinschi, D., Lerescu, A. I., Noda, M. and Okuyama, M., Jpn. J. Appl. Phys. 41, 2639 (2002).Google Scholar
10. Takahashi, M., Kodama, K., Nakaiso, T., Noda, M. and Okuyama, M., Integr. Ferroelectr. 40, 125 (2001).Google Scholar
11. Zangwill, A., Physics at surface, (Cambridge University Press, Cambridge, 1988) p. 21.Google Scholar
12. Takahashi, M., Kodama, K., Noda, M., Hedblom, P., Grishin, A. and Okuyama, M., to be published in Jpn. J. Appl. Phys. (2002).Google Scholar
13. Kijima, T., Kawashima, Y., Idemoto, Y., and Ishiwara, H., Jpn. J. Appl. Phys. 41, 1164 (2002).Google Scholar
14. Stachiotti, M. G., Rodriguez, C. O., Ambrosch-Draxl, C. and Christensen, N. E., Phys. Rev. B 61, 14 434 (2000).Google Scholar
15. Kane, E. O., Phys. Rev. 127, 131 (1962).Google Scholar
16. Takahashi, M., Watanabe, T., Funakubo, H., Kodama, K., Noda, M. and Okuyama, M., to be published in J. Kor. Phys. Soc. (2002).Google Scholar