Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-15T19:39:07.393Z Has data issue: false hasContentIssue false

Boundary behavior of the Bergman metric

Published online by Cambridge University Press:  22 January 2016

Bo-Yong Chen*
Affiliation:
Department of Applied Mathematics, Tongli University, 200092, P. R. China, chenboy@online.sh.cn
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let Ω be a bounded pseudoconvex domain in Cn. We give sufficient conditions for the Bergman metric to go to infinity uniformly at some boundary point, which is stated by the existence of a Hölder continuous plurisubharmonic peak function at this point or the verification of property (P) (in the sense of Coman) which is characterized by the pluricomplex Green function.

Keywords

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2002

References

[1] Berndtsson, B., The extension theorem of Ohsawa-Takegoshi and the theorem of Donnelly-Fefferman, Ann. Inst. Fourier (Grenoble), 46 (1996), 10831094.Google Scholar
[2] Blocki, Z. and Pflug, P., Hyperconvexity and Bergman completeness, Nagoya Math. J. 151(1998), 221225.Google Scholar
[3] Chen, Y. B., Completeness of the Bergman metric on non-smooth pseudoconvex domains, Ann. Pol. Math. LXXI (1999), 241251.Google Scholar
[4] Cho, S., A lower bound on the Kobayashi metric near a point of finite type in Cn , J. Geom. Anal. 2 (1992), 317325.CrossRefGoogle Scholar
[5] Coman, D., Boundary behavior of the pluricomplex Green function, Ark. Math. 36 (1998), 341353.Google Scholar
[6] D’Angelo, J., A note on the Bergman kernel, Duke Math. 45 (1978), 259265.Google Scholar
[7] D’Angelo, J., An explicit computation of the Bergman kernel function, J. of Geom. Anal. 4 (1994), 2334.Google Scholar
[8] Demailly, P. J., Mesures de Monge-Ampère et mesures pluriharmoniques, Math. Z. 194 (1987), 519564.Google Scholar
[9] Diederich, K. and Fornaess, J. E., Proper holomorphic maps onto pseudoconvex domains with real-analytic boundary, Ann. of Math. 110 (1979), 575592.Google Scholar
[10] Diederich, K., Fornaess, J. E. and Herbort, G., Boundary behavior of the Bergman metric, Proc. Symp. Pure Math. 41 (1984), 5967.CrossRefGoogle Scholar
[11] Diederich, K. and Ohsawa, T., An estimate for the Bergman distance on pseudoconvex domains, Ann. of Math. 141 (1995), 181190.CrossRefGoogle Scholar
[12] Diederich, K. and Ohsawa, T., General continuity principles for the Bergman kernel, Internat. J. of Math. 5 (1994), 189199.CrossRefGoogle Scholar
[13] Donnelly, H. and Fefferman, C., L2 - cohomology and index theorem for the Bergman metric, Ann. of Math. 118 (1983), 593618.CrossRefGoogle Scholar
[14] Gong, S. and Zheng, X., The Bergman kernel of some Reinhardt domains, Trans. Amer. Math. Soc. 348 (1996), 17711803.Google Scholar
[15] Hahn, T. K., Inequality between the Bergman metric and Caratheodory differential metric, Proc. Amer. Math. Soc. 68 (1978), 193194.Google Scholar
[16] Herbort, G., The Bergman metric on hyperconvex domains, Math. Z. 232 (1999), 183196.Google Scholar
[17] Jarnicki, M. and Pflug, P., Bergman completeness of complete circular domains, Ann. Pol. Math. 50 (1989), 219222.Google Scholar
[18] Klimek, M., Extremal plurisubharmonic functions and invariant pseudodistances, Bull. Soc. Math. France. 113 (1985), 123142.Google Scholar
[19] Kobayashi, S., Geometry of bounded domains, Trans. Amer. Math. Soc. 92 (1959), 267290.Google Scholar
[20] McNeal, J., Lower bounds on the Bergman metric near a point of finite type, Ann. of Math. 136 (1992), 339360.CrossRefGoogle Scholar
[21] Ohsawa, T., A remark on the completeness of the Bergman metric, Proc. Jap. Acad. Sci. 57 (1981), 283240.Google Scholar
[22] Ohsawa, T., An essay on the Bergman metric and balanced domains, Reproducing kernels and their applications, ISAAC, e, S. Saitoh et el. Kluwer 1999, 141148.Google Scholar
[23] Pflug, P., Quadratintegrable holomorphe Functionen und die Serre-Vermutung, Math. Ann. 216 (1975), 285288.Google Scholar
[24] Sibony, N., A class of hyperbolic manifolds, In: Recent Developments in Several Complex Variables, Princeton Univ. Press (1981), 357372.CrossRefGoogle Scholar