Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-21T03:49:14.359Z Has data issue: false hasContentIssue false

SUBCOMPLEXES OF CERTAIN FREE RESOLUTIONS

Published online by Cambridge University Press:  25 March 2024

MAYA BANKS
Affiliation:
Department of Mathematics University of Wisconsin–Madison 480 Lincoln Drive 53706 Madison, WI United States mdbanks@wisc.edu
ALEKSANDRA SOBIESKA*
Affiliation:
Department of Mathematics University of Wisconsin–Madison 480 Lincoln Drive 53706 Madison, WI United States

Abstract

We invoke the Bernstein–Gel$'$fand–Gel$'$fand (BGG) correspondence to study subcomplexes of free resolutions given by two well-known complexes, the Koszul and the Eagon–Northcott. This approach provides a complete characterization of the ranks of free modules in a subcomplex in the Koszul case and imposes numerical restrictions in the Eagon–Northcott case.

Type
Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Foundation Nagoya Mathematical Journal

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The first author was partially supported by the National Science Foundation (Grant No. DMS-1902123).

References

Aramova, A., Herzog, J., and Hibi, T., Gotzmann theorems for exterior algebras and combinatorics , J. Algebra 191 (1997), no. 1, 174211.CrossRefGoogle Scholar
Berkesch, C., Erman, D., and Smith, G. G., Virtual resolutions for a product of projective spaces , Algebr. Geom. 7 (2020), no. 4, 460481.Google Scholar
Bernšteĭn, I. N., Gel’fand, I. M., and Gel’fand, S. I., Algebraic vector bundles on Pn and problems of linear algebra , Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 6667.Google Scholar
Bertram, A., New stabilities for graded modules , 2018. Available at https://www.math.utah.edu/bertram/PnStability.pdf (accessed 17 July 2023).Google Scholar
Bruns, W. and Herzog, J., Cohen–Macaulay rings, Cambridge Studies in Advanced Mathematics, Vol. 39, Cambridge University Press, Cambridge, 1993.Google Scholar
Buchsbaum, D. A. and Eisenbud, D., What makes a complex exact? , J. Algebra 25 (1973), 259268.CrossRefGoogle Scholar
Eagon, J. A. and Northcott, D. G., Ideals defined by matrices and a certain complex associated with them , Proc. Roy. Soc. London Ser. A 269 (1962), 188204.Google Scholar
Eisenbud, D., Commutative algebra, Graduate Texts in Mathematics, Vol. 150, Springer, New York, 1995. With a view toward algebraic geometry.CrossRefGoogle Scholar
Eisenbud, D., The geometry of syzygies, Graduate Texts in Mathematics, Vol. 229, Springer, New York, 2005. A second course in commutative algebra and algebraic geometry.Google Scholar
Eisenbud, D., Fløystad, G., and Schreyer, F.-O., Sheaf cohomology and free resolutions over exterior algebras , Trans. Amer. Math. Soc. 355 (2003), no. 11, 43974426.CrossRefGoogle Scholar
Eisenbud, D. and Koh, J., Some linear syzygy conjectures , Adv. Math. 90 (1991), no. 1, 4776.CrossRefGoogle Scholar
Gieseker, D., On the moduli of vector bundles on an algebraic surface , Ann. of Math. (2) 106 (1977), no. 1, 4560.CrossRefGoogle Scholar
Graf V. Bothmer, H.-C., Scrollar syzygies of general canonical curves with genus $\le 8$ $,$ Trans. Amer. Math. Soc. 359 (2007), no. 2, 465488.CrossRefGoogle Scholar
Green, M. L., Koszul cohomology and the geometry of projective varieties , J. Differential Geom. 19 (1984a), no. 1, 125171.CrossRefGoogle Scholar
Green, M. L., Koszul cohomology and the geometry of projective varieties II , J. Differential Geom. 20 (1984b), no. 1, 279289.CrossRefGoogle Scholar
Harada, M., Nowroozi, M., and Tuyl, A. V., Virtual resolutions of points in ${\mathbb{P}}^1\times {\mathbb{P}}^1$ , J. Pure Appl. Algebra 226 (2022), 107140.CrossRefGoogle Scholar
King, A. D., Moduli of representations of finite-dimensional algebras , Quart. J. Math. 45 (1994), no. 180, 515530.CrossRefGoogle Scholar
Loper, M. C., What makes a complex a virtual resolution? , Trans. Amer. Math. Soc. Ser. B 8 (2021), 885898.CrossRefGoogle Scholar
Vakil, R., Murphy’s law in algebraic geometry: Badly-behaved deformation spaces , Invent. Math. 164 (2006), no. 3, 569590.CrossRefGoogle Scholar