Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-13T12:33:20.689Z Has data issue: false hasContentIssue false

Can you step twice into the same river? Climate change through time: Abridged text of the inaugural address as professor in Climate Modelling and Analysis at the Faculty of Geosciences of Utrecht University held on 29 February 2008

Published online by Cambridge University Press:  01 April 2016

S.L. Weber*
Affiliation:
Faculty of Geosciences Utrecht University and Royal Netherlands Meteorological Institute (KNMI), the Netherlands. Email:weber@knmi.nl
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Is it possible to step twice into the same river? That is the question I would like to put to you. At first glance, there is no reason to assume that a river will not look exactly the same tomorrow as it does today. And we tend to forget whether it was different yesterday or the day before. ‘Will the weather ever get any better?’ we tend to say to each other after a couple of rainy days. Will we ever see a cold winter again with an Elfstedentocht? Fortunately, some people keep records of the weather, or keep track of rivers flooding or falling dry. That makes it possible to know for sure what stays the same and what changes.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2008

References

Archer, D., 2005. Fate of fossil fuel in geologic time, J. Geophys. Res., 110, C09S05, doi:10.1029/2004JC002625.Google Scholar
Arrhenius, S., 1907. Das Werden der Welten, Leipzig Akademische Verlagsgesellschaft: 208 pp.Google Scholar
Callendar, G.S., 1938. The artificial production of carbon dioxide and its influence on temperature, Quart.J.Royal Met.Soc., 64, 223237.CrossRefGoogle Scholar
Crowley, T.J. & Lowery, I., 2000. How warm was the Medieval Warm Period?, Ambio, 29: 5154.CrossRefGoogle Scholar
De Vries, P. & S.L. Weber, S.L., 2005. The Atlantic freshwater budget as a diagnostic for the existence of a stable shut-down of the meridional overturning circulation, Geophys. Res. Letters, 32, L09606, D0I 10.1029/ 2004GL021450.CrossRefGoogle Scholar
Haussen, J., Fung, I., Lads, A., Rind, D., Lebedeff, S., Ruedy, R. & Russell, G., 1988. Global climate changes as forecast by GISS three-dimensional model, J. Geophys. Res., 93: 93419364.Google Scholar
Hansen, J., Sato, M., Ruedy, R., Lo, K., Lea, D.L. & M. Medina-Elizade, M., 2006. Global temperature change, PNAS, 103: 1428814293.Google Scholar
Hegerl, G.C., Crowley, T.J., Braum, S.K., Kim, K.-Y., & Hyde, W.T., 2003. Detection of volcanic, solar and greenhouse gas signals in paleo-reconstructions of Northern Hemisphere temperature, Geophys. Res. Letters, 30: 12421246.CrossRefGoogle Scholar
Heraclitus, ca. 500 BC DK91 (Harris 21) and DK49a (Harris 110). In: Diels, H.A. & Kranz, W., 1934. Die Fragmente der Vorsokratiker, and W. Harris, 2006. Heraclitus, the complete fragments.Google Scholar
Jansen, E., et al., 2007. Palaeoclimate. In: Solomon, S. et al. (eds): Climate Change 2007: the Physical Science Basis. Contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, USA.Google Scholar
Jones, P.D., Briffa, K.R., Barnett, T.P. & Tett, S.F.B., 1998. High-resolution paleoclimatic records for the last millennium: interpretation, integration and comparison to control-run temperatures, The Holocene, 8: 455471.Google Scholar
Joussaume, S., et al., 1999. Monsoon changes for 6000 years ago: results of 18 simulations from the Paleoclimate Modeling Intercomparison Project (PMIP), Geophysical Research Letters, 26: 859862.CrossRefGoogle Scholar
Juckes, M.M., Allen, M.R., Briffa, K.R., Esper, J., Hegerl, G.C., Moberg, A., Osborn, T.J. & Weber, S.L., 2007. Millennial temperature reconstruction intercomparison and evaluation, Climate of the Past, 3: 591609.Google Scholar
Kageyama, M., Laine, A., Abe-Ouchi, A., Braconnot, P., Cortijo, E., Crucifix, M., De Vernal, A., Guiot, J., Hewitt, C.D., Kitoh, A., Marti, 0., Ohgaito, R., Otto-Bliesner, B., Peltier, W.R., Rosell-Mele, A., Vettoretti, G., Weber, S.L. & MARGO Project Members, 2006. Last Glacial Maximum temperatures over the North Atlantic, Europe and western Siberia: a comparison between PMIP models, MARGO sea-surface temperatures and pollen-based reconstructions, Quatern. Science Rev., 25: 20822102.Google Scholar
Lamb, H.H., 1982. Climate, history and the modern world, Routledge, New York: 433 pp.Google Scholar
Mann, M.E., Bradley, R.S. & Hughes, M.K., 1999. Northern Hemisphere temperatures during the past millennium: inferences, uncertainties and limitations, Geophys. Res. Lett., 26: 759762.CrossRefGoogle Scholar
Massen, V., Cheddadi, R., Braconnot, P., Joussaume, S., Texier, S. & PMIP participating groups, 1999. Mid-Holocene climate in Europe: what can we infer from PMIP model-data comparisons?, Climate Dynamics, 15: 163182.Google Scholar
McAvaney, , et al., 2001. Model Evaluation. In: Houghton, J.T., et al. (eds): Climate Change 2001. The Scientific Basis. Contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, and New York, USA: 881 pp.Google Scholar
Moberg, A., Sonechkin, D.M., Holmgren, K., Datsenko, N.M. & Karlen, W., 2005. Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution data, Nature, 433: 613617.Google Scholar
Oerlemans, J.H., 2006. Extracting a climate signal from 169 glacier records, Science, 308: 675677.Google Scholar
Palastanga, V., Van der Schrier, G., Weber, S.L., Kleinen, T., Osborn, T. & Briffa, K., 2008. Atmosphere and ocean dynamics: contributors to the European Little Ice Age? Submitted.Google Scholar
Sluijs, A., & Brinkhuis, H., 2008. Rapid carbon injection and transient global warming during the Paleocene-Eocene thermal maximum. Netherlands Journal of Geosciences 87/3: 201206.Google Scholar
Tuenter, I., Weber, S.L., Hilgen, F.J., Lourens, L.J. & Ganopolski, A., 2004. Simulation of climate phase lags in the response to precession and obliquity forcing, and the role of vegetation, Climate Dyn., 24: 279295. DOI 10.1007/S00382-004-0490-1.Google Scholar
Van de Plassche, 0., Van der Schrier, G., Weber, S.L., Gehreis, W.R. & Wright, A.J., 2003. Sea-level variability in the northwest Atlantic during the past 1500 years: a delayed response to solar forcing?, Geophys. Res. Letters, 30: 1755817561.CrossRefGoogle Scholar
Weber, S.L., 2005. A timescale analysis of the Northern Hemisphere temperature response to volcanic and solar forcing, Climate of the Past, 1: 917.Google Scholar
Weber, S.L., & Drijfhout, S.S., 2007. Stability of the Atlantic Meridional Overturning Circulation in the Last Glacial Maximum climate, Geophys. Res. Letters, 34, L22706, doi:10.1029/2007GL031437.CrossRefGoogle Scholar
Weber, S.L., Drijfhout, S.S., Abe-Ouchi, A., Crucifix, M., Eby, M., Ganopolski, A., Murakami, S., Otto-Bliesner, B. & Peltier, W.R., 2007. The modern and glacial overturning circulation in the Atlantic Ocean in PMIP coupled model simulations, Climate of the Past, 3: 5164.Google Scholar