Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-17T18:28:55.935Z Has data issue: false hasContentIssue false

Environmental conditions and paleowind directions at the end of the Weichselian Late Pleniglacial recorded in aeolian sediments and geomorphology (Twente, Eastern Netherlands)

Published online by Cambridge University Press:  01 April 2016

Ko (J.) van Huissteden*
Affiliation:
Vrije Universiteit, Faculty of Earth Sciences, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
Jacques C.G. Schwan
Affiliation:
Mauritsstraat 35, 3583 HH Utrecht, The Netherlands
Mark D. Bateman
Affiliation:
Sheffield Centre for International Drylands Research, Department of Geography, Winter St., University of Sheffield Sheffield S10 2TN Great Britain
*
2corresponding author; e-mail
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Late weichselian Pleniglacial wind regime in the eastern Netherlands is reconstructed by means of landform and sedimentological analysis. This analysis involves aeolian and fluvial landforms in the Dinkel river valley in the Twente region. The aeolian deposits considered here date from the Last Glacial Maximum (approximately 22 ka) to the start of the Belling Interstadial at 14.7 ka.

A major event in this period is the formation of a cryoturbation level caused by permafrost degradation, overlain by an erosional hiatus dated between 21 and 17 ka. Both features are attributed to a period of warmer and moister climate, causing permafrost degradation and erosion by surficial runoff. Thereafter aeolian activity prevailed under relatively arid conditions. A deflation surface was formed, the Beuningen Gravel Bed. This deflation surface is present in many Weichselian sections in the Netherlands and the adjacent parts of Belgium and Germany. The deflation occurred concurrently with deposition of coversand at other places.

The morphology of the coversand-landscape in the Dinkel valley was controlled by the relief of the pre-existing floodplain and the wind pattern. Coversand ridges consisting of low dunes accumulated near the margins of the active channel belt. Relatively thick sand sheets occur in the leesides of the ridges, thin sand sheets are found at greater distance.

Mainly westerly sand-transporting winds operated during winter and summer. In winter aeolian deposition occurred by frequent and strong easterly winds also. On the smallest, local scale, the pattern of deposition was determined by the topography and moisture of the receiving surface.

Coversand deposition came to an end with the formation of a sand sheet under relatively warm and less arid conditions. Coversand deposition continued into the Belling Interstadial; colonization of the coversand surface by vegetation probably has been delayed by nutrient-poor conditions.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2001

References

Bateman, M.D. & Van Huissteden, J., 1999. The timing of last glacial periglacial and aeolian events, Twente, eastern Netherlands. Journal of Quaternary Science 14: 277283.3.0.CO;2-W>CrossRefGoogle Scholar
Bateman, M.D., Van Huissteden, J. & Kasse, C. in prep. Chronology of cryostratigraphy and aeolian sedimentation during the Last Glacial termination in the Netherlands.Google Scholar
Björck, S., Walker, M.J.C., Cwynar, L.C., Johnsen, S., Knudsen, K.-L., Lowe, J.J., Wohlfart, B., INTIMATE members, 1998. An event stratigraphy for the Last Termination in the Norm Atlantic region based on the Greenland ice-core record: A proposal by the INTIMATE group. Journal of Quaternary Science 13: 283292.Google Scholar
Catt, J.A., 1977. Loess and coversands. In: Shotton, F.W. (ed.): British Quaternary studies: recent advances. Oxford University Press (Oxford): 221229.Google Scholar
Christiansen, H.H. & Svensson, H., 1998. Windpolished boulders as indicators of a Late Weichselian wind regime in Denmark in relation to neighbouring areas. Permafrost and Periglacial Processes 9: 121.Google Scholar
Christiansen, H.H. & Svensson, H., 1999. Windpolish evidence: an important direct indicator of geomorphologically active palaeo-winds. A reply to the discussion by Vandenberghe, Isarin and Renssen. Permafrost and Periglacial Processes 10: 203204.3.0.CO;2-H>CrossRefGoogle Scholar
Dijkmans, J. & Törnqvist, T., 1991. Modern periglacial aeolian deposits and landforms in the Søndre Strømfjord area, West Greenland and their palaeoenvironmental implications. Meddedelser om Grönland, Geoscience 25: 39 pp.Google Scholar
Dijkmans, J.A.A. & Wintle, A.G., 1991. Methodological problems in thermoluminescence dating of Weichselian coversand and late Holocene drift sand from the Lutterzand area, E. Netherlands. Geologie en Mijnbouw 70: 2133.Google Scholar
Doppert, J.W.C., Ruegg, G.H.J., Van Staalduinen, C.J., Zagwijn, W.H. & Zandstra, J.G., 1975. Formaties van het Kwartair en Boven Tertiair in Nederland. In: Zagwijn, W.H. & Staalduinen, C.J. (eds.): Toelichting bij geologische overzichtskaarten van Nederland. Rijks Geologische Dienst (Haarlem):1156.Google Scholar
French, H.M., 1996. The periglacial environment. Longman (London): 341 pp.Google Scholar
Good, T.R. & Bryant, I.D., 1985. Fluvio-aeolian sedimentation-An example from Banks Islands N.W.T., Canada. Geografiska Annaler 67 A: 3346.Google Scholar
Hoek, W. & Bohncke, S.J.P., 1997. Environmental and climate changes in the Netherlands during the Lateglacial and Early Holocene. In: Hoek, W: Palaeogeography of Lateglacial Vegetations. Aspects of Lateglacial and Early Holocene vegetation, abiotic landscape and climate in the Netherlands. Thesis, Vrije Universiteit (Amsterdam): 113128.Google Scholar
Huijzer, B. & Vandenberghe, J., 1998. Climatic reconstruction of the Weichselian Pleniglacial in northwestern and central Europe. Journal of Quaternary Science 13: 391417.3.0.CO;2-6>CrossRefGoogle Scholar
Hunter, R.E., 1977. Basic types of stratification in small eolian dunes. Sedimentology 24: 361387.CrossRefGoogle Scholar
Kasse, C. 1997. Cold-climate aeolian sand-sheet formation in Northwestern Europe (c. 14–12.4 ka); a response to permafrost degradation and increased aridity. Permafrost and Periglacial Processes 8: 295311.Google Scholar
Kasse, C. 1999. Late Pleniglacial and Late Glacial aeolian phases in the Netherlands. In: Schirmer, W. (ed.): Dunes and fossil soils. GeoArchaeoRhein 3: 6182.Google Scholar
Kleinsman, W.B., De Lange, G.W. Maarleveld, G.C. & Ten Cate, J.A.M., 1978. Geomorfologische kaart van Nederland 1:50.000 Blad 28 en blad 29 Almelo/Denekamp. Stichting voor Bodemkartering / Rijks Geologische Dienst (Wageningen/Haarlem).Google Scholar
Kocurek, G. & Fielder, G., 1982. Adhesion structures. Journal of Sedimentary Petrology 52: 12291241.Google Scholar
Kolstrup, E., 1980. Climate and stratigraphy in Northwestern Europe between 30,000 B.P. and 20,000 B.P., with special reference to The Netherlands. Mededelingen van de Rijks Geologische Dienst 32-15: 181253.Google Scholar
Koster, E.A., 1988. Ancient and modern cold-climate aeolian sand deposition: review. Journal of Quaternary Science 3: 6983.CrossRefGoogle Scholar
Kozarski, S. & Nowaczyk, B., 1991. Lithofacies variation and chronostratigraphy of Late Vistulian and Holocene aeolian phenomena in northwestern Poland. Zeitschrift für Geomorphologie, Neue Folge, Suppl.-Band 90: 107122.Google Scholar
Maarleveld, G.C., 1960. Wind directions and cover sands in the Netherlands. Biuletyn Peryglacjalny 8: 4958.Google Scholar
Maarleveld, G.C., 1971. The geomorphological map of the Dinkel valley. In: Van der Hammen, T. & Wijmstra, T.A. (eds.): The Upper Quaternary of the Dinkel valley. Mededelingen van de Rijks Geologische Dienst 22: 159163.Google Scholar
Mol, J., Vandenberghe, J., Kasse, K. & Stel, H., 1993. Periglacial microjointing and faulting in Weichselian fluvio-aeolian deposits. Journal of Quaternary Science 8: 1530.CrossRefGoogle Scholar
McKenna Neumann, C. 1993. A review of aeolian transport processes in cold environments. Progress in Physical Geography 17: 137155.Google Scholar
Meyer, H.-H. & Kottmeyer, C. 1989. Die atmosphärischen Zirkulation in Europa im Hochglazial der Weichsel-Eiszeit - abgeleitet von Paläowind-Indikatoren und Modellsimulationen. Eiszeitalter und Gegenwart 39: 1018.Google Scholar
Pissart, A., Vincent, J.-S. & Edlund, S.A., 1977. Depots et phénomènes éoliens sur l’île de Banks, Territoires du Nord-Ouest, Canada. Canadian Journal of Earth Sciences 14: 24622480.CrossRefGoogle Scholar
Pye, K. & Tsoar, H., 1990. Aeolian sands and sand dunes. Unwin Hyman (London): 396 pp.Google Scholar
Romanovskii, N.N., 1985. Distribution of recently active ice and soil wedges in the USSR. In: M. Church, M. & Slaymaker, O. (eds.). Field and Theory; lectures in geocryology. University of British Columbia Press (Vancouver): 154165.Google Scholar
Ruegg, G.H.J., 1983. Periglacial eolian evenly laminated sandy deposits in the Late Pleistocene of NW Europe, a facies unrecorded in modern sedimentological handbooks. In: Brookfield, M.E. & Ahlbrandt, T.S. (eds.): Eolian sediments and processes (Developments in Sedimentology 38). Elsevier (Amsterdam): 455482.Google Scholar
Ruz, M.-H. & Allard, M., 1995. Sedimentary structures of cold-climate coastal dunes, Eastern Hudson Bay, Canada. Sedimentology 42: 725734.Google Scholar
Schwan, J., 1986. The origin of horizontal alternating bedding in Weichselian aeolian sands in Northwestern Europe. Sedimentary Geology 49: 73108.CrossRefGoogle Scholar
Schwan, J., 1987. Sedimentologie characteristics of a fluvial to aeolian succession in Weichselian Talsand in the Emsland (F.R.G.). Sedimentary Geology 52: 273298.Google Scholar
Schwan, J., 1988. The structure and genesis ofWeichselian to Early Holocene aeolian sand sheets in Western Europe. Sedimentary Geology 55: 197232.CrossRefGoogle Scholar
Schwan, J., 1989. Grain fabrics of natural and experimental low-angle aeolian sand deposits. Geologie en Mijnbouw 68: 211219.Google Scholar
Van denberghe, J., 1985. Paleoenvironment and stratigraphy during the last Glacial in the Belgian-Dutch border region. Quaternary Research 24: 2338.Google Scholar
Vandenberghe, J., 1988. Cryomrbations. In: Clark, M.J. (ed.): Advances in Periglacial Geomorphology. Wiley (Chichester):179198.Google Scholar
Vandenberghe, J. & Van Huissteden, J., 1988. Fluvio-aeolian interaction in a region of continuous permafrost. Proceedings 5th International Conference on Permafrost. Tapir Publications (Trondheim): 876881.Google Scholar
Vandenberghe, J., & Kasse, C. 1993: Cryopedimentation on soft-sediment subsoils. Würburger Geographische Arbeiten 87: 283297.Google Scholar
Vandenberghe, J., Isarin, R.F.B. & Renssen, H., 1999. Comments on Windpolished boulders as indicators of a Late Weichselian wind regime in Denmark in relation to neighbouring areas by Christiansen and Svensson [9(1): 1–21, 1998]. Permafrost and Periglacial Processes 10: 199201.3.0.CO;2-5>CrossRefGoogle Scholar
Van der Hammen, T., 1951. Late Glacial flora and periglacial phenomena in the Netherlands. Thesis, Leiden University (Leiden): 183 pp.Google Scholar
Van der Hammen, T., 1971. The Upper Quaternary stratigraphy of the Dinkel valley. In: Van der Hammen, T. & Wijmstra, T.A. (eds.): The Upper Quaternary of the Dinkel valley. Mededelingen van de Rijks Geologische Dienst 22: 8185.Google Scholar
Van der Hammen, T. & Wijmstra, T.A., 1971. The Upper Quaternary of the Dinkel valley. Mededelingen van de Rijks Geologische Dienst 22: 55214.Google Scholar
Van Geel, B., Coope, G.R. & Van der Hammen, T., 1989. Palaeoe-cology and stratigraphy of the Lateglacial type section at Usselo (The Netherlands). Review of Palaeobotany and Palynology 60: 25130.Google Scholar
Van Huissteden, J., 1990. Tundra rivers of the last glacial: Sedimentation and geomorphological processes during the Middle Pleniglacial in Twente, Eastern Netherlands. Mededelingen Rijks Geologische Dienst 44: 3138.Google Scholar
Van Huissteden, J., Vandenberghe, J., Van der Hammen, T. & Laan, W. 2000. Fluvial and aeolian interaction under permafrost conditions: Weichselian Late Pleniglacial, Twente, eastern Netherlands. Catena 40: 307321.Google Scholar
Vink, A.P.A. & Sevink, J., 1971. Soils and paleosoils in the Lutterzand. In: Van der Hammen, T. & Wijmstra, T.A. (eds.): The Upper Quaternary of the Dinkel valley. Mededelingen Rijks Geologische Dienst 22: 165186.Google Scholar
Washburn, A.L., 1979. Geocryology. Edward Arnold (London): 406 pp.Google Scholar