Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-10T13:13:59.724Z Has data issue: false hasContentIssue false

Colorful path detection in vertex-colored temporal

Published online by Cambridge University Press:  18 August 2023

Riccardo Dondi*
Affiliation:
University of Bergamo, Bergamo, Italy
Mohammad Mehdi Hosseinzadeh*
Affiliation:
University of Bergamo, Bergamo, Italy
*
Corresponding authors: Riccardo Dondi, Mohammad Mehdi Hosseinzadeh; Emails: riccardo.dondi@unibg.it, m.hosseinzadeh@unibg.it
Corresponding authors: Riccardo Dondi, Mohammad Mehdi Hosseinzadeh; Emails: riccardo.dondi@unibg.it, m.hosseinzadeh@unibg.it

Abstract

Finding paths is a fundamental problem in graph theory and algorithm design due to its many applications. Recently, this problem has been considered on temporal graphs, where edges may change over a discrete time domain. The analysis of graphs has also taken into account the relevance of vertex properties, modeled by assigning to vertices labels or colors. In this work, we deal with a problem that, given a static or temporal graph, whose vertices are colored graph looks for a path such that (1) the vertices of the path have distinct colors and (2) that path includes the maximum number of colors. We analyze the approximation complexity of the problem on static and temporal graphs, and we prove an inapproximability bound. Then, we consider the problem on temporal graphs, and we design a heuristic for it. We present an experimental evaluation of our heuristic, both on synthetic and real-world graphs. The experimental results show that for many instances of the problem, our method is able to return near-optimal solutions.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Action Editor: Prof. Ulrik Brandes

References

Abiteboul, S., & Vianu, V. (1997). Regular path queries with constraints. In Proceedings of the Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (pp. 122133).CrossRefGoogle Scholar
Akrida, E. C., Mertzios, G. B., Spirakis, P. G., & Raptopoulos, C. L. (2021). The temporal explorer who returns to the base. Journal of Computer and System Sciences, 120, 179193. doi: 10.1016/j.jcss.2021.04.001.CrossRefGoogle Scholar
Alon, N., Yuster, R., & Zwick, U. (1995). Color-coding. Journal of the ACM, 42(4), 844856. doi: 10.1145/210332.210337.CrossRefGoogle Scholar
Betzler, N., van Bevern, R., Fellows, M. R., Komusiewicz, C., & Niedermeier, R. (2011). Parameterized algorithmics for finding connected motifs in biological networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 8(5), 12961308. doi: 10.1109/TCBB.2011.19.CrossRefGoogle ScholarPubMed
Bruckner, S., Hüffner, F., Komusiewicz, C., & Niedermeier, R. (2013). Evaluation of ILP-based approaches for partitioning into colorful components. In: Bonifaci, V., Demetrescu, C., & Marchetti-Spaccamela, A. (Eds.), Experimental Algorithms, 12th International Symposium, SEA 2013, Rome, Italy, June 5-7, 2013. Proceedings, Lecture Notes in Computer Science (Vol. 7933, pp. 176187). Cham: Springer. doi: 10.1007/978-3-642-38527-8_17.Google Scholar
Bumpus, B. M., & Meeks, K. (2021). Edge exploration of temporal graphs. In Flocchini, P., & Moura, L. (Eds.), Proceedings of the 32nd International Workshop on Combinatorial Algorithms, IWOCA 2021 (pp. 107121). Cham: Springer. doi: 10.1007/978-3-030-79987-8_8.Google Scholar
Casteigts, A., Himmel, A., Molter, H., & Zschoche, P. (2020). Finding temporal paths under waiting time constraints. In: Cao, Y., Cheng, S., & Li, M. (Eds.), Procceding of the 31st International Symposium on Algorithms and Computation, ISAAC 2020 (pp. 30:130:18). doi: 10.4230/LIPIcs.ISAAC.2020.30.Google Scholar
Castelli, M., Dondi, R., & Hosseinzadeh, M. M. (2020). Genetic algorithms for finding episodes in temporal networks. Procedia Computer Science, 176, 215224.CrossRefGoogle Scholar
Choudhury, M. D., Feldman, M., Amer-Yahia, S., Golbandi, N., Lempel, R., & Yu, C. (2010). Automatic construction of travel itineraries using social breadcrumbs. In Chignell, M. H., & Toms, E. G. (Eds.), HT’10, Proceedings of the 21st ACM Conference on Hypertext and Hypermedia, June 13-16, 2010 (pp. 3544). doi: 10.1145/1810617.1810626.Google Scholar
Cohen, J., Italiano, G. F., Manoussakis, Y., Thang, N. K., & Pham, H. P. (2021). Tropical paths in vertex-colored graphs. Journal of Combinatorial, 42(3), 476498. doi: 10.1007/s10878-019-00416-y.Google Scholar
Costa, A. F., Yamaguchi, Y., Traina, A. J. M., Traina, C. Jr, & Faloutsos, C. (2015). Rsc: Mining and modeling temporal activity in social media. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM (pp. 269278).CrossRefGoogle Scholar
Diestel, R. (2012). Graph Theory, Graduate Texts in Mathematics (Vol. 173, 4th ed.). Berlin/Heidelberg, Springer.Google Scholar
Dondi, R., Fertin, G., & Vialette, S. (2011). Finding approximate and constrained motifs in graphs. In: Giancarlo, R., & Manzini, G. (Eds.), Combinatorial Pattern Matching - 22nd Annual Symposium, CPM 2011, Palermo, Italy, June 27-29, 2011. Proceedings, Lecture Notes in Computer Science (Vol. 6661, pp. 388401). Cham: Springer. doi: 10.1007/978-3-642-21458-5_33.Google Scholar
Dondi, R., & Hosseinzadeh, M. M. (2021). Dense sub-networks discovery in temporal networks. SN Computer Science, 2(3), 111.CrossRefGoogle Scholar
Erlebach, T., Hoffmann, M., & Kammer, F. (2021). On temporal graph exploration. Journal of Computer and System Sciences, 119, 118. doi: 10.1016/j.jcss.2021.01.005.CrossRefGoogle Scholar
Gionis, A., Lappas, T., Pelechrinis, K., & Terzi, E. (2014). Customized tour recommendations in urban areas. In: Carterette, B., Diaz, F., Castillo, C., & Metzler, D. (Eds.), Seventh ACM International Conference on Web Search and Data Mining, WSDM.Google Scholar
Hagberg, A., Swart, P., & Chult, D. S. (2008). Exploring network structure, dynamics, and function using networkx, Tech. rep. Los Alamos, NM: Los Alamos National Lab. (LANL).Google Scholar
Holme, P. (2015). Modern temporal network theory: a colloquium. The European Physical Journal B, 88(9), 234.CrossRefGoogle Scholar
Kempe, D., Kleinberg, J., & Kumar, A. (2002). Connectivity and inference problems for temporal networks. Journal of Computer and System Sciences, 64(4), 820842.CrossRefGoogle Scholar
Kovanen, L., Karsai, M., Kaski, K., Kertész, J., & Saramäki, J. (2011). Temporal motifs in time-dependent networks. Journal of Statistical Mechanics: Theory and Experiment, 2011(11), P11005.CrossRefGoogle Scholar
Kowalik, L., & Lauri, J. (2016). On finding rainbow and colorful paths. Theoretical Computer Science, 628, 110114. doi: 10.1016/j.tcs.2016.03.017.CrossRefGoogle Scholar
Lacroix, V., Fernandes, C. G., & Sagot, M. (2006). Motif search in graphs: Application to metabolic networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 3(4), 360368. doi: 10.1109/TCBB.2006.55.CrossRefGoogle ScholarPubMed
Leskovec, J., & Krevl, A. (2014). SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.edu/data Google Scholar
Marino, A., & Silva, A. (2021). Königsberg sightseeing: Eulerian walks in temporal graphs. In Flocchini, P., & Moura, L. (Eds.), Proceedings of the 32nd International Workshop on Combinatorial Algorithms, IWOCA 2021 (pp. 485500). Cham: Springer. doi: 10.1007/978-3-030-79987-8_34.Google Scholar
Mendelzon, A. O., & Wood, P. T. (1995). Finding regular simple paths in graph databases. SIAM Journal on Computing, 24(6), 12351258. doi: 10.1137/S009753979122370X.CrossRefGoogle Scholar
Rozenshtein, P., Bonchi, F., Gionis, A., Sozio, M., & Tatti, N. (2019). Finding events in temporal networks: Segmentation meets densest subgraph discovery. Knowledge and Information Systems, 62, 1611–1639.Google Scholar
Sanli, C., & Lambiotte, R. (2015). Temporal pattern of online communication spike trains in spreading a scientific rumor: how often, who interacts with whom? Frontiers in Physics, 3, 79.CrossRefGoogle Scholar
Thejaswi, S., Gionis, A., & Lauri, J. (2020). Finding path motifs in large temporal graphs using algebraic fingerprints. Big Data, 8(5), 335362. doi: 10.1089/big.2020.0078.CrossRefGoogle ScholarPubMed
Wadhwa, S., Prasad, A., Ranu, S., Bagchi, A., & Bedathur, S. (2019). Efficiently answering regular simple path queries on large labeled networks. In Proceedings of the 2019 International Conference on Management of Data (pp. 14631480).CrossRefGoogle Scholar
Williamson, D. P., & Shmoys, D. B. (2011). The Design of Approximation Algorithms. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Wu, H., Cheng, J., Huang, S., Ke, Y., Lu, Y., & Xu, Y. (2014). Path problems in temporal graphs. Proceedings of the VLDB Endowment, 7(9), 721732. doi: 10.14778/2732939.2732945.CrossRefGoogle Scholar
Wu, H., Cheng, J., Ke, Y., Huang, S., Huang, Y., & Wu, H. (2016). Efficient algorithms for temporal path computation. IEEE Transactions on Knowledge and Data Engineering, 28(11), 29272942. doi: 10.1109/TKDE.2016.2594065.CrossRefGoogle Scholar
Zheng, C., Swenson, K. M., Lyons, E., & Sankoff, D. (2011). Omg! orthologs in multiple genomes - competing graph-theoretical formulations. In Przytycka, T. M., & Sagot, M. (Eds.), Algorithms in Bioinformatics - 11th International Workshop, WABI 2011, Saarbrücken, Germany, September 5-7, 2011. Proceedings, Lecture Notes in Computer Science (Vol. 6833, pp. 364375). Cham: Springer. doi: 10.1007/978-3-642-23038-7_30.Google Scholar
Zschoche, P., Fluschnik, T., Molter, H., & Niedermeier, R. (2020). The complexity of finding small separators in temporal graphs. Journal of Computer and System Sciences, 107, 7292. doi: 10.1016/j.jcss.2019.07.006.CrossRefGoogle Scholar
Zuckerman, D. (2006). Linear degree extractors and the inapproximability of max clique and chromatic number. In Proceedings of the 38th Annual ACM Symposium on Theory of Computing, May 21-23, 2006 (pp. 2123). doi: 10.1145/1132516.1132612.Google Scholar