Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-14T08:35:17.413Z Has data issue: false hasContentIssue false

Effects of Dietary Fat on Cholesterol Metabolism: Regulation of Plasma LDL Concentrations

Published online by Cambridge University Press:  14 December 2007

Andrew M. Salter
Affiliation:
Department of Applied Biochemistry and Food Science, University of Nottingham, Sutton Bonington Campus, Loughborough, Leics LE12 5RD
David A. White
Affiliation:
Department of Biochemistry, University of Nottingham Medical School, Queen's Medical Centre, NottinghamNG7 2UH
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © The Nutrition Society 1996

References

Amri, E., Teboul, L., Vannier, C., Grimaldi, P.-A. & Ailhaud, G. (1996). Fatty acids regulate the expression of lipoprotein lipase gene and activity in preadipose and adipose cells. Biochemical Journal 314, 541546.CrossRefGoogle ScholarPubMed
Ascherio, A., Hennekens, C. H., Buring, J. E., Master, C., Stampfer, M. J. & Willett, W. C. (1994). Trans-fatty acids intake and risk of myocardial infarction. Circulation 89, 94101.CrossRefGoogle ScholarPubMed
Beg, Z. H. & Brewer, H. B. (1982). Modulation of rat liver 3-hydroxy-3-methylglutaryl coenzyme A reductase activity by reversible phosphorylation. Federation Proceedings 41, 26342638.Google Scholar
Bennett, A. J., Billett, M. A., Salter, A. M., Mangiapane, E. H., Bruce, J. S., Anderton, K. L., Marenah, C. B., Lawson, N. & White, D. A. (1995 a). Modulation of hepatic apolipoprotein B, 3-hydroxy-3-methylglutaryl-CoA reductase and low density lipoprotein receptor mRNA and plasma lipoprotein concentrations by defined dietary fats. Comparison of trimyristin, tripalmitin, tristearin and triolein. Biochemical Journal 311, 167173.CrossRefGoogle ScholarPubMed
Bennett, A. J., Billett, M. A., Salter, A. M., & White, D. A. (1995 b). Regulation of hamster hepatic microsomal triglyceride transfer protein mRNA levels by dietary fats. Biochemical and Biophysical Research Communications 212, 473478.CrossRefGoogle ScholarPubMed
Briggs, M. R., Yokoyama, C., Wang, X., Brown, M. S. & Goldstein, J. L. (1993). Nuclear protein that binds sterol regulatory element of low density lipoprotein receptor promoter. 1. Identification of the protein and delineation of its target nucleotide sequence. Journal of Biological Chemistry 268, 1449014496.CrossRefGoogle ScholarPubMed
Bruce, J. S. & Salter, A. M. (1996). Metabolic fate of oleic acid, palmitic acid and stearic acid in cultured hamster hepatocytes. Biochemical Journal 316, 847852.CrossRefGoogle ScholarPubMed
Dashti, N. (1992). The effect of low density lipoproteins, cholesterol, and 25-hydroxycholestero1 on apolipoprotein B gene expression in Hep G2 cells. Journal of Biologica1 Chemistry 267, 71607169.CrossRefGoogle Scholar
Davidson, N. O., Drewek, M. J., Gordon, J. I. & Elovson, J. (1988). Rat intestinal apolipoprotein B gene expression. Evidence for integrated regulation by bile salt, fatty acid, and phospholipid flux. Journal of Clinical investigation 82, 300308.CrossRefGoogle ScholarPubMed
Derr, J., Kris-Etherton, P. M., Pearson, T. A. & Seligson, F. H. (1993). The role of fatty acid saturation on plasma lipids, lipoproteins, and apolipoproteins. II. The plasma total and low-density lipoprotein cholesterol response to individual fatty acids. Metabolism 42, 130134.CrossRefGoogle ScholarPubMed
Dietschy, J. M., Turley, S. D. & Spady, D. K. (1993). Role of liver in the maintenance of cholesterol and low density lipoprotein homeostasis in different animal species, including humans. Journal of Lipid Research 34, 16371659.CrossRefGoogle ScholarPubMed
Dixon, J. L. & Ginsberg, H. N. (1993). Regulation of hepatic secretion of apolipoprotein B-containing lipoproteins: information obtained from cultured liver cells. Journal of Lipid Research 34, 167179.CrossRefGoogle ScholarPubMed
Ellsworth, J. L., Chandrasekaran, C. & Cooper, A. D. (1991). Evidence for sterol-independent regulation of low-density lipoprotein receptor activity in Hep-G2 cells. Biochemical Journal 279, 175187.CrossRefGoogle ScholarPubMed
Enerbäck, S. & Grimble, J. M. (1993). Lipoprotein lipase gene expression: physiological regulators at the transcriptional and post-transcriptional level. Biochimica et Biophysica Acta 1169, 107125.CrossRefGoogle ScholarPubMed
Fan, J., McCormick, S. P. A., Krauss, R. M., Taylor, S., Quan, R., Taylor, J. M. & Young, S. G. (1995). Overexpression of human apolipoprotein B-100 in transgenic rabbits results in increased levels of LDL and decreased levels of HDL. Arteriosclerosis, Thrombosis, and Vascular Biology 15, 18891899.CrossRefGoogle ScholarPubMed
Ferrer, A., Caelles, C., Massot, N. & Hegardt, F. G. (1985). Activation of rat liver cytosolic 3-hydroxy-3-methylglutaryl coenzyme A reductase kinase by adenosine 5'-monophosphate. Biochemical and Biophysical Research Communications 132, 497504.CrossRefGoogle ScholarPubMed
Fielding, C. J. & Fielding, P. E. (1995). Molecular physiology of reverse cholesterol transport. Journal of Lipid Research 36, 211228.CrossRefGoogle ScholarPubMed
Gardner, C. D. & Kraemer, H. C. (1995). Monounsaturated versus polyunsaturated dietary fat and serum lipids. A meta-analysis. Arteriosclerosis, Thrombosis, & Vascular Biology 15, 19171927.CrossRefGoogle ScholarPubMed
Gibbons, G. F. & Wiggins, D. (1995). The enzymology of hepatic very-low-density lipoprotein assembly. Biochemical Socieiy Transactions 23, 495500.CrossRefGoogle ScholarPubMed
Goldstein, J. L. & Brown, M. S. (1990). Regulation of the mevalonate pathway. Nature 343, 425430.CrossRefGoogle ScholarPubMed
Harris, W. S. (1989). Fish oils and plasma lipid and lipoprotein metabolism in humans: a critical review. Journal of Lipid Research 30, 785807.CrossRefGoogle ScholarPubMed
Hayes, K. C. & Khosla, P. (1992). Dietary fatty acid thresholds and cholesterolemia. FASEB Journal 6, 2600&2607.CrossRefGoogle ScholarPubMed
Hayes, K. C., Pronczuk, A. & Khosla, P. (1995). A rationale for plasma cholesterol modulation by dietary fatty acids: modeling the human response in animals. Journal of Nutritional Biochemistry 6, 188194.CrossRefGoogle Scholar
Hayes, K. C., Pronczuk, A., Lindsey, S. & Diersen-Schade, D. (1991). Dietary saturated fatty acids (12:0, 14:0, 16:0) differ in their impact on plasma cholesterol and lipoproteins in non-human primates. American Journal of Clinical Nutrition 53, 491498.CrossRefGoogle Scholar
Hegsted, D. M., Ausman, L. M., Johnson, J. A. & Dallal, G. E. (1993). Dietary fat and serum lipids: an evaluation of the experimental data. American Journal of Clinical Nutrition 57, 875883.CrossRefGoogle ScholarPubMed
Hegsted, D. M., McGandy, R. B., Myers, M. L. & Stare, F. J. (1965). Quantitative effects of dietary fat on serum cholesterol in man. American Journal of Clinical Nutrition 17, 281295.CrossRefGoogle ScholarPubMed
Hennessy, L. K., Osada, J., Ordova, J. M., Nicolosi, R. J., Stucchi, A. F., Brousseau, M. E. & Schaefer, E. J. (1992). Effects of dietary fats and cholesterol on liver lipid content and hepatic apolipoprotein A-1, B, and E and LDL receptor mRNA levels in cebus monkeys. Journal of Lipid Research 33, 351360.CrossRefGoogle Scholar
Horton, J. D., Cuthbert, J. A. & Spady, D. K. (1993). Dietary fatty acids regulate hepatic low density lipoprotein (LDL) transport by altering LDL receptor protein and mRNA levels. Journal of Clinical Investigation 92, 743749.CrossRefGoogle ScholarPubMed
Keys, A., Anderson, J. T. & Grande, F. (1965). Serum cholesterol response to changes in the diet. IV. Particular saturated fatty acids in the diet. Metabolism 14, 776787.CrossRefGoogle ScholarPubMed
Khan, B. V., Fungwe, T. V., Wilcox, H. G. & Heimberg, M. (1990). Cholesterol is required for the secretion of the very-low-density lipoprotein: in vivo studies. Biochimica et Biophysica Acta 1044, 297304.CrossRefGoogle ScholarPubMed
Khan, B., Wilcox, H. G. & Heimberg, M. (1989). Cholesterol is required for secretion of very-low-density lipoprotein by rat liver. Biochemical Journal 258, 807816.CrossRefGoogle ScholarPubMed
Khosla, P. & Hayes, K. C. (1993). Dietary palmitic acid raises plasma LDL cholesterol relative to oleic acid only at a high intake of cholesterol. Biochimica et Biophysica Acta 1210, 1322.CrossRefGoogle Scholar
Kromann, N. & Green, A. (1980). Epidemiological studies in the Upernavik district, Greenland. Incidence of some chronic diseases 1950–1974. Acta Medica Scandinavica 208: 401406.CrossRefGoogle ScholarPubMed
Kroon, P. A., DeMartino, J. A., Thompson, G. M. & Chao, Y.-S. (1986). Molecular cloning of partial cDNAs for rabbit liver apolipoprotein B and the regulation of its mRNA levels by dietary cholesterol. Proceedings of the National Academy of Sciences, USA 83, 50715075.CrossRefGoogle ScholarPubMed
Lai, E., Prezioso, V. R., Tao, W. F., Chen, W. S. & Darnell, J. E. (1991). Hepatocyte nuclear factor 3α belongs to a gene family in mammals that is homologous to the Drosophila homeotic gene fork-head. Genes and Development 5, 416427.CrossRefGoogle Scholar
Lin, M. C. M., Arbeeny, C., Bergquist, K., Kienzle, B., Gordon, D. A. & Wetterau, J. R. (1994). Cloning and regulation of hamster microsomal triglyceride transfer protein. The regulation is independent from that of other hepatic and intestinal proteins which participate in the transport of fatty acids and triglycerides. Journal of Biological Chemistry 269, 2913829145.CrossRefGoogle ScholarPubMed
Lin, M. C. M., Gordon, D. & Wetterau, J. R. (1995). Microsomal triglyceride transfer protein (MTP) regulation in HepG2 cells: insulin negatively regulates MTP gene expression. Journal of Lipid Research 36, 10731081.CrossRefGoogle ScholarPubMed
Liu, J. W., Shoyab, M. & Grove, R. I. (1993). Induction of Egr-1 by oncostatin M precedes up-regulation of low density lipoprotein receptors in Hep G2 cells. Cell Growth and Differentiation 4, 611616.Google Scholar
Makar, R. S. J., Lipsky, P. E. & Cuthbert, J. A. (1994). Nonsterol regulation of low density lipoprotein receptor gene expression in T cells. Journal of Lipid Research 35, 18881895.CrossRefGoogle ScholarPubMed
Matsumoto, A., Aburatani, H., Shibasaki, Y., Kodama, T., Takaku, F. & Itakura, H. (1987). Cloning and regulation of rat apolipoprotein B mRNA. Biochemical and Biophysical Research Communications 142, 9299.CrossRefGoogle ScholarPubMed
Mattson, F. H. & Grundy, S. M. (1985). Comparison of effects of dietary saturated, monounsaturated, and polyunsaturated fatty acids on plasma lipids and lipoproteins in man. Journal of Lipid Research 26, 194202.CrossRefGoogle ScholarPubMed
Mensink, R. P., & Katan, M. B. (1990). Effects of dietary trans fatty acids on high density and low density lipoprotein cholesterol levels in healthy subjects. New England Journal of Medicine 323, 439445.CrossRefGoogle ScholarPubMed
Mensink, R. P. & Katan, M. B. (1992). Effects of dietary fatty acids on serum lipids and lipoproteins. A meta-analysis of 27 trials. Arteriosclerosis & Thrombosis 12, 911919.CrossRefGoogle ScholarPubMed
Mensink, R. P., Zock, P. L., Katan, M. B. & Hornstra, G. (1992). Effect of dietary cis and trans fatty acids on serum lipoprotein[a] levels in humans. Journal of Lipid Research 33, 14931501.CrossRefGoogle ScholarPubMed
Multiple Risk Factor Intervention Trial Research Group (1982). Multiple risk factor intervention trials. Risk factor mortality results. Journal of the American Medical Association 248, 14651477.CrossRefGoogle Scholar
Murthy, S., Albright, E., Mathur, S. N., Davidson, N. O. & Field, F. J. (1992). Apolipoprotein B mRNA abundance is decreased by eicosapentaenoic acid in CaCo-2 cells. Effect on the synthesis and secretion of apolipoprotein B. Arteriosclerosis and Thrombosis 12, 691700.CrossRefGoogle ScholarPubMed
Ness, G. C., Eales, S., Lopez, D. & Zhao, Z. (1994 a). Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase gene expression by sterols and nonsterols in rat liver. Archives of Biochemistry and Biophysics 308, 420425.CrossRefGoogle ScholarPubMed
Ness, G. C., Zhao, Z. & Wiggins, L. (1994 b). Insulin and glucagon modulate hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase activity by affecting immunoreactive protein levels. Journal of Biologica1 Chemistry 269, 2916829172.CrossRefGoogle ScholarPubMed
Nestel, P., Noakes, M., Belling, B., McArthur, R., Clifton, P., Janus, E. & Abbey, M. (1992). Plasma lipoprotein lipid and Lp[a] changes with substitution of elaidic acid for oleic acid in the diet. Journal of Lipid Research 33, 10291036.CrossRefGoogle ScholarPubMed
Oliver, M. F. (1991). Might treatment of hypercholesterolaemia increase non-cardiac mortality? Lancet 337, 15291531.CrossRefGoogle ScholarPubMed
Osborne, T. F. (1991). Single nucleotide resolution of sterol regulatory region in promoter for 3-hydroxy-3-methylglutaryl coenzyme A reductase. Journal of Biological Chemistry 266, 1394713951.CrossRefGoogle ScholarPubMed
Perillo, B., Tedesco, I., Laezza, C., Santillo, M., Romano, A., Aloj, S. M. & Bifulco, M. (1995). Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase gene expression in FRTL-5 cells. 2. Down-regulation by v-K-ras oncogene. Journal of Biological Chemistry 270, 1523715241.CrossRefGoogle ScholarPubMed
Powell, E. E. & Kroon, P. A. (1994). Low density lipoprotein receptor and 3-hydroxy-3-methylglutaryl coenzyme A reductase gene expression in human mononuclear leukocytes is regulated coordinately and parallels gene expression in human liver. Journal of Clinical Investigation 93, 21682174.CrossRefGoogle ScholarPubMed
Pufal, D. A., Quinlan, P. T. & Salter, A. M. (1995). Effect of dietary triacylglycerol structure on lipoprotein metabolism: a comparison of the effects of dioleoylpalmitoylglycerol in which palmitate is esterified to the 2-or 1(3)-position of the glycerol. Biochimica et Biophysica Acta 1258, 4148.CrossRefGoogle Scholar
Pullinger, C. R., North, J. D., Yeng, B.-B., Rifici, V. A., Ronhild de Brito, A. E. & Scott, J. (1989). The apolipoprotein B gene is constitutively expressed in Hep G2 cells: regulation of secretion by oleic acid, albumin, and insulin, and measurement of the mRNA half-life. Journal of Lipid Research 30, 10651077.CrossRefGoogle Scholar
Roth, M., Emmons, L. R., Perruchoud, A. & Block, L. H. (1991). Expressions of the low density lipoprotein receptor and 3-hydroxy-3-methylglutaryl coenzyme A reductase genes are stimulated by recombinant platelet-derived growth factor isomers. Proceedings of the National Academy of Science, USA 88, 18881892.CrossRefGoogle ScholarPubMed
Rudling, M.(1992). Hepatic mRNA levels for the LDL receptor and HMG-CoA reductase show coordinate regulation in vivo. Journal of Lipid Research 33, 493501.CrossRefGoogle ScholarPubMed
Sanchez, H. B., Yieh, L. & Osborne, T. F. (1995). Cooperation by sterol regulatory element-binding protein and Spl in sterol regulation of low density lipoprotein receptor gene. Journal of Biological Chemistry 270, 11611169.CrossRefGoogle Scholar
Sato, R., Yang, J., Wang, X., Evans, M. J., Ho, Y. K., Goldstein, J. L. & Brown, M. S. (1994). Assignment of the membrane attachment, DNA binding and transcriptional activation domains of sterol regulatory element-binding protein-I (SREBP-1). Journal of Biological Chemistry 269, 1726717273.CrossRefGoogle Scholar
Selby, S. L. & Yao, Z. (1995). Level of apolipoprotein B mRNA has an important effect on the synthesis and secretion of apolipoprotein B-containing lipoproteins. Studies on transfected hepatoma cell lines suppressing recombinant human apolipoprotein B. Arteriosclerosis, Thrombosis, and Vascular Biology 15, 19001910.CrossRefGoogle Scholar
Sessions, V. A., Martin, A., Gomez-Muñoz, A., Brindley, D. N. & Salter, A. M. (1993). Cholesterol feeding induces hypertriglyceridaemia in hamsters and increases the activity of Mg2+-dependent phosphatidate phospho-hydrolase in the liver. Biochimica et Biophysica Acta 1166, 238243.CrossRefGoogle Scholar
Shepherd, J., Cobbe, S. M., Ford, I., Isles, C. G., Lorimer, A. R., MacFarlane, P. W., McKillop, J. H. & Packard, C. J. (1995). Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. New England Journal of Medicine 333: 13011307.CrossRefGoogle ScholarPubMed
Small, D. M. (1991). The effects of glyceride structure on absorption and metabolism. Annual Review of Nutrition 11, 413434.CrossRefGoogle ScholarPubMed
Sorci-Thomas, M., Wilson, M. D., Johnson, F. L., Williams, D. L. & Rudel, L. L. (1989). Studies on the expression of genes encoding apolipoproteins B-100 and B-48 and the low density lipoprotein receptor in non human primates. Comparison of dietary fat and cholesterol. Journal of Biological Chemistry 264, 90399045.CrossRefGoogle Scholar
Spady, D. K., Woollett, L. A. & Dietschy, J. M. (1993). Regulation of plasma LDL-cholesterol levels by dietary cholesterol and fatty acids. Annual Review of Nutrition 13, 355381.CrossRefGoogle ScholarPubMed
Srivastava, R. A. K., Ito, H., Hess, M., Srivastava, N. & Schonfeld, G. (1995). Regulation of low density lipoprotein receptor gene expression in Hep G2 and Caco-2 cells by palmitate, oleate, and 25-hydroxycholesterol. Journal of Lipid Research 36, 14341446.CrossRefGoogle Scholar
Srivastava, R. A. K., Jiao, S., Tang, J. J., Pfleger, B. A., Kitchens, R. T. & Schonfeld, G. (1991). In vivo regulation of low density lipoprotein receptor and apolipoprotein B gene expressions by dietary fat and cholesterol in inbred strains of mice. Biochimica et Biophysica Acta 1086, 2943.CrossRefGoogle ScholarPubMed
Südhof, T. C., Goldstein, J. L., Brown, M. S. & Russell, D. W. (1985). The LDL receptor gene: a mosaic of exons shared with different proteins. Science 228, 815822.CrossRefGoogle ScholarPubMed
Sundram, K., Hayes, K. C. & Siru, O. H. (1994). Dietary palmitic acid results in lower serum cholesterol than does a lauric-myristic acid combination in normolipemic humans. American Journal of Clinical Nutrition 59, 841846.CrossRefGoogle ScholarPubMed
Sundram, K., Hayes, K. C. & Siru, O. H. (1995). Both dietary 18:2 and 16:0 may be required to improve the serum LDL/HDL cholesterol ratio in normocholesterolemic men. Journal of Nutritional Biochemistry 6, 179187.CrossRefGoogle Scholar
Tholstrup, T., Marckmann, P., Jespersen, J., Vessby, B., Jart, A. & Sandström, B. (1994). Effect on blood lipids, coagulation, and fibrinolysis of a fat high in myristic acid and a fat high in palmitic acid. American Journal of Clinical Nutrition 60, 919925.CrossRefGoogle Scholar
Valett, S. M., Sanchez, H. B., Rosenfeld, J. M. & Osborne, T. F. (1996). A direct role of sterol regulatory element binding protein in activation of 3-hydroxy-3-methylglntaryl coenzyme A reductase gene. Journal of Biological Chemistry 271, 1224712253.CrossRefGoogle Scholar
Wang, X., Briggs, M. R., Hua, X., Yokoyama, C., Goldstein, J. L. & Brown, M. S. (1993). Nuclear protein that binds sterol regulatory element of low density lipoprotein receptor promoter. 2. Purification and characterization. Journal of Biological Chemistry 268, 1449714504.CrossRefGoogle ScholarPubMed
Wang, X., Pai, J.-T., Wiedenfeld, E. A., Medina, J. C., Slaughter, C. A., Goldstein, J. L. & Brown, M. S. (1995). Purification of an interleukin-lβ converting enzyme-related cysteine protease that cleaves sterol regulatory element-binding proteins between the leucine zipper and transmembrane domains. Journal of Biological Chemistry 270, 1804418050.CrossRefGoogle Scholar
Wetterau, J. R., Aggerbeck, L. P., Laplaud, P. M. & McLean, L. R. (1991). Structural properties of the microsomal triglyceride-transfer protein complex. Biochemistry 30, 44064412.CrossRefGoogle ScholarPubMed
Wetterau, J. R., Combs, K. A., Spinner, S. N. & Joiner, B. J. (1990). Protein disulfide isomerase is a component of the microsomal triglyceride transfer protein complex. Journal of Biological Chemistry 265, 98009807.CrossRefGoogle ScholarPubMed
Wetterau, J. R. & Gregg, R. E. (1995). Microsomal triglyceride transfer protein: insights into lipoprotein assembly and abetalipoproteinaemia. In Atherosclerosis X, pp. 4044 [Woodford, F. P., Davignon, J. and Sniderman, A. editors]. Amsterdam: Elsevier Science B. V.Google Scholar
Willett, W. C., Stampfer, M. J., Manson, J. E., Colditz, G. A., Speizer, F. E., Rosner, B. A., Sampson, L. A. & Hennekens, C. H. (1993). Intake of trans fatty acids and risk of coronary heart disease among women. Lancet 341 581585.CrossRefGoogle ScholarPubMed
Wood, R., Kubena, K., O'Brien, B., Tseng, S. & Martin, G. (1993). Effect of butter, mono-and polyunsaturated fatty acid-enriched butter, trans fatty acid margarine, and zero trans fatty acid margarine on serum lipids and lipoproteins in healthy men. Journal of Lipid Research 34, 111.CrossRefGoogle ScholarPubMed
Woollett, L. A., Spady, D. K. & Dietschy, J. M. (1992 a). Regulatory effects of the saturated fatty acids 6:0 through 18:0 on hepatic low density lipoprotein receptor activity in the hamster. Journal of Clinical Investigation 89, 11331141.CrossRefGoogle ScholarPubMed
Woollett, L. A., Spady, D. K. & Dietschy, J. M. (1992 b). Saturated and unsaturated fatty acids independently regulate low density lipoprotein receptor activity and production rate. Journal of Lipid Research 33, 7788.CrossRefGoogle ScholarPubMed
Wu, X., Sakata, N., Dixon, J. & Ginsberg, H. N. (1994). Exogenous VLDL stimulates apolipoprotein B secretion from Hep G2 cells by both pre- and post-translational mechanisms. Journal of Lipid Research 35, 12001210.CrossRefGoogle Scholar
Yu, S. M., Derr, J., Etherton, T. D. & Kris-Etherton, P. M. (1995). Plasma cholesterol-predictive equations demonstrate that stearic acid is neutral and monounsaturated fatty acids are hypocholesterolemic. American Journal of Clinicu1 Nutrition 61, 11291139.CrossRefGoogle ScholarPubMed
Zhang, Z. J., Sniderman, A. D., Kalant, D., Vu, H., Monge, J. C., Tao, T. Z. & Cianflone, K. (1993). The role of amino acids in apoBlOO synthesis and catabolism in human HepG2 cells. Journal of Biological Chemistry 268, 2692026926.CrossRefGoogle ScholarPubMed
Zock, P. L., de Vries, J. H. M. & Katan, M. B. (1994). Impact of myristic acid versus palmitic acid on serum lipid and lipoprotein levels in healthy women and men. Arteriosclerosis & Thrombosis 14, 567575.CrossRefGoogle ScholarPubMed
Zock, P. L., de Vries, J. H. M., de Fouw, N. J. & Katan, M. J. (1995). Positional distribution of fatty acids in dietary triglycerides: effects on fasting blood lipoprotein concentrations in humans. American Journal of Clinical Nutrition 61, 4855.CrossRefGoogle ScholarPubMed