Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-07-03T03:50:16.853Z Has data issue: false hasContentIssue false

Metabolic Aspects of the Regulation of Voluntary Food Intake and Appetite

Published online by Cambridge University Press:  14 December 2007

J. M. Forbes
Affiliation:
Department of Animal Physiology and Nutrition, University of Leeds, Leeds LS2 9JT
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © The Nutrition Society 1988

References

REFERENCES

Adams, G. B. & Forbes, J. M. (1981). Additivity of effects of ruminal acetate and either portal propionate or rumen distension on food intake in sheep. Proceedings of the Nutrition Society 40, 44A.Google Scholar
Anil, M. H. & Forbes, J. M. (1980). Feeding in sheep during intraportal infusions of short-chain fatty acids and the effect of liver denervation. Journal of Physiology 298, 407414.CrossRefGoogle ScholarPubMed
Anil, M. H. & Forbes, J. M. (1987). Neural control and neurosensory functions of the liver. Proceedings of the Nutrition Society 46, 125133.CrossRefGoogle ScholarPubMed
Anil, M. H. & Forbes, J. M. (1988). The roles of hepatic nerves in the reduction of food intake as a consequence of intraportal sodium propionate administration in sheep. Quarterly Journal of Experimental Physiology. (In the Press.)CrossRefGoogle ScholarPubMed
Anil, M. H., Forbes, J. M. & Mbanya, J. N. (1987). Additive effects of acetate, propionate and distension of the rumen on hay intake by lactating cows. Journal of Physiology 386, 61P.Google Scholar
Antin, J., Gibbs, J., Holt, J., Young, R. & Smith, G. P. (1975). Cholecystokinin elicits the complete behavioural sequence of satiety in rats. Journal of Comparative and Physiological Psychology 89, 784790.CrossRefGoogle ScholarPubMed
Baile, C. A. & Forbes, J. M. (1974). Control of feed intake and regulation of energy balance in ruminants. Physiological Reviews 54, 160214.CrossRefGoogle ScholarPubMed
Baile, C. A., McLaughlin, C. L. & Della-Fera, C. L. (1986). Role of cholecystokinin and opioid peptides in control of food intake. Physiological Reviews 66, 172234.CrossRefGoogle ScholarPubMed
Baldwin, B. A., Cooper, T. R. & Parrott, R. F. (1983). Intravenous cholecystokinin octapeptide in pigs reduces operant responding for food, water, sucrose solution or radiant heat. Physiology and Behavior 30, 399403.CrossRefGoogle ScholarPubMed
Bassett, J. M. (1975). Dietary and gastro-intestinal control of hormones regulating carbohydrate metabolism in ruminants. In Digestion and Metabolism in the Ruminant, pp. 383398 [McDonald, I. W. and Warner, A. C. I., editors]. Armidale: University of New England Press.Google Scholar
Bellinger, L. L. (1981). Commentary on ‘The current status of the hepatostatic control of food intake’. Appetite 2, 144145.CrossRefGoogle Scholar
Bellinger, L. L., Mendel, V. E., Williams, V. E. & Castonguay, T. W. (1984). The effect of liver denervation on meal patterns, body weight and body composition of rats. Physiology and Behavior 33, 661667.CrossRefGoogle ScholarPubMed
Bellinger, L. L. & Williams, F. E. (1986). Glucagon and epinephrine suppression of food intake in liver denervated rats. American Journal of Physiology 251, R349R358.Google ScholarPubMed
Bellush, L. L. & Rowland, N. (1986). Dietary self-selection in diabetic rats, an overview. Brain Research Bulletin 17, 653661.CrossRefGoogle ScholarPubMed
Blundell, J. E. (1983). Problems and processes underlying the control of food selection and nutrient intake. In Nutrition and the Brain, pp. 163221 [Wurtman, R. J. and Wurtman, J. J., editors]. New York: Raven Press.Google Scholar
Blundell, J. E. & Hill, A. J. (1987). Nutrition, serotonin and appetite: Case study in the evolution of a scientific idea. Appetite 8, 183194.CrossRefGoogle ScholarPubMed
Booth, D. A. (1972 a). Satiety and behavioral caloric compensation following intragastric glucose loads in the rat. Journal of Comparative and Physiological Psychology 78, 412432.CrossRefGoogle ScholarPubMed
Booth, D. A. (1972 b). Postabsorptively induced suppression of appetite and the energostatic control of feeding. Physiology and Behavior 9, 199202.CrossRefGoogle ScholarPubMed
Booth, D. A. (1987). Central dietary ‘Feedback onto nutrient selection’: not even a scientific hypothesis. Appetite 8, 195201.CrossRefGoogle ScholarPubMed
Booth, D. A. & Campbell, C. S. (1975). Relation of fatty acids to feeding behaviour effects of palmitic acid infusions, lighting variations and pent-4-enoate, insulin of propranolol injection. Physiology and Behavior. 15, 523535.CrossRefGoogle Scholar
Booth, D. A. & Jarman, S. P. (1976). Inhibition of food intake in the rat following complete absorption of glucose delivered into the stomach, intestine or liver. Journal of Physiology 259, 501522.CrossRefGoogle ScholarPubMed
Campfield, L. A., Brandon, P. & Smith, F. J. (1985). On-line continuous measurement of blood glucose and meal pattern in free-feeding rats, the role of glucose in meal initiation. Brain Research Bulletin 14, 605616.CrossRefGoogle ScholarPubMed
Campfield, L. A. & Smith, F. J. (1986). Functional coupling between transient declines in blood glucose and feeding behavior, temporal relationships. Brain Research Bulletin 17, 427433.CrossRefGoogle ScholarPubMed
Canbeyli, R. S. & Koopmans, H. S. (1984). Comparison of gastric, duodenal and jejunal contributions to the inhibition of food intake in the rat. Physiology and Behavior 33, 951958.CrossRefGoogle Scholar
Castonguay, C. J., Kaiser, L. L. & Stern, J. S. (1986). Meal pattern analysis, Artifacts, assumptions and implications. Brain Research Bulletin 17, 439444.CrossRefGoogle ScholarPubMed
Collier, G. H. (1985). Satiety, An ecological perspective. Brain Research Bulletin 14, 693700.CrossRefGoogle ScholarPubMed
Dambach, G. & Friedmann, N. (1974). Substrate-induced membrane potential changes in the perfused rat liver. Biochimica et Biophysica Acta 367, 366370.CrossRefGoogle ScholarPubMed
De Castro, J., Paullin, S. K. & De Lugas, G. M. (1978). Insulin and glucagon as determinants of body weight set point and microregulation in rats. Journal of Comparative and Physiological Psychology 92, 571579.CrossRefGoogle ScholarPubMed
Donhoffer, S. Z. & Vonotsky, J. (1947). The effect of thyroxine on food intake and selection. American Journal of Physiology 150, 334339.CrossRefGoogle ScholarPubMed
Driver, P. M. & Forbes, J. M. (1981). Episodic growth hormone secretion in sheep in relation to time of feeding, spontaneous meals and short term fasting. Journal of Physiology 317, 413424.CrossRefGoogle ScholarPubMed
Elkin, R. G., Ndife, L. I. & Rogler, J. C. (1985). Dietary self-selection and the regulation of protein and energy intake in chicks. Physiology and Behavior 34, 743750.CrossRefGoogle ScholarPubMed
Epstein, A. N. & Teitelbaum, P. (1967). Specific loss of the hypoglycemic control of feeding in recovered lateral rats. American Journal of Physiology 213, 11591167.CrossRefGoogle ScholarPubMed
Even, P. & Nicolaidis, S. (1986). Short-term control of feeding, limitation of the glucostatic theory. Brain Research Bulletin 17, 621626.CrossRefGoogle ScholarPubMed
Evvard, J. M. (1915). Is the appetite of swine a reliable indication of physiological needs? Proceedings of the Iowa Academy of Science 1915, 375403.Google Scholar
Faust, I. M., Johnson, P. R. & Hirsch, J. (1977). Surgical removal of adipose tissue alters feeding behavior and the development of obesity in rats. Science 197, 393396.CrossRefGoogle ScholarPubMed
Fernstrom, J. D. (1987). Food-induced changes in brain serotonin synthesis, is there a relationship to appetite for specific macronutrients. Appetite 8, 163182.CrossRefGoogle Scholar
Forbes, J. M. (1980). A model of the short-term control of feeding in the ruminant, effects of changing animal or feed characteristics. Appetite 1, 2141.CrossRefGoogle Scholar
Forbes, J. M. (1986). The Voluntary Food Intake of Farm Animals. London: Butterworths.Google Scholar
Forbes, J. M. (1988). Relationships between feed intake, energy balance and adiposity. In Genetic, Metabolic and Hormonal Basis of Leanness in Domestic Birds, pp. 97107 [Leclercq, B., editor]. London: Butterworths.CrossRefGoogle Scholar
Freedman, M. R., Castonguay, T. W. & Stern, J. S. (1985). Effect of adrenalectomy and corticosterone replacement on meal patterns of Zucker rats. American Journal of Physiology 249, R584R594.Google ScholarPubMed
Friedman, M. I. & Sawchenko, P. E. (1984). Evidence for hepatic involvement in control of ad libitum food intake in rats. American Journal of Physiology 247, R106R113.Google ScholarPubMed
Friedman, M. I., Tordoff, M. G. & Ramirez, I. (1986). Integrated metabolic control of food intake. Brain Research Bulletin 17, 855859.CrossRefGoogle ScholarPubMed
Gavin, M. L., Gray, J. M. & Johnson, P. R. (1984). Estrogen-induced effects on food intake and body weight in ovariectomized, partially lipectomized rats. Physiology and Behavior 32, 5560.CrossRefGoogle ScholarPubMed
Geary, N. (1979). Food intake and behavioral caloric compensation after protein repletion in the rat. Physiology and Behavior 23, 1089.CrossRefGoogle ScholarPubMed
Geary, N. & Smith, G. P. (1983). Selective hepatic vagotomy blocks pancreatic glucagon's satiety effect. Physiology and Behavior 31, 391394.CrossRefGoogle ScholarPubMed
Geiselman, P. J., Martin, J. R., Vanderweele, D. A. & Novin, D. (1980). Multivariate analysis of meal patterning in intact and vagotomized rabbits. Journal of Comparative and Physiological Psychology 94, 388399.CrossRefGoogle ScholarPubMed
Gibbs, J., Kulkosky, P. J. & Smith, G. P. (1981). Effects of peripheral and central bombesin on feeding behavior of rats. Peptides 2, Suppl. 2, 179183.CrossRefGoogle ScholarPubMed
Gibbs, J., Young, R. C. & Smith, G. P. (1973). Cholecystokinin elicits satiety in rats with open gastric fistulas. Nature 245, 323325.CrossRefGoogle ScholarPubMed
Glick, Z. (1979). Intestinal satiety with and without upper intestinal factors. American Journal of Physiology 236, R142R146.Google ScholarPubMed
Gordon, J. G. & Tribe, D. E. (1951). The self-selection of diet by pregnant ewes. Journal of Agricultural Science 41, 187190.CrossRefGoogle Scholar
Granneman, J. & Friedman, M. I. (1984). Effect of hepatic vagotomy and/or coeliac ganglionectomy on the delayed eating response to insulin and 2DG injection in rats. Physiology and Behavior 33, 495498.CrossRefGoogle ScholarPubMed
Gregory, P. C., McFadyen, M. & Rayner, D. V. (1987). The influence of gastrointestinal infusions of glucose on regulation of food intake in pigs. Quarterly Journal of Experimental Physiology 72, 525536.CrossRefGoogle ScholarPubMed
Grill, H. J. (1986). Caudal brainstem contributions to the integrated neural control of energy homeostasis. In Feeding Behavior: Neural and Humoral Controls, pp. 103129. [Ritter, R. C., Ritter, S. and Barnes, C. D., editors]. Orlando: Academic Press.CrossRefGoogle Scholar
Hinton, V., Esguerra, M., Farhoody, N., Granger, J. & Geary, N. (1987). Epinephrine inhibits feeding nonspecifically in the rat. Physiology and Behavior 40, 109115.CrossRefGoogle ScholarPubMed
Hinton, V., Rosofsky, M., Granger, J. & Geary, N. (1986). Combined injection potentiates the satiety effects of pancreatic glucagon, cholecystokinin, and bombesin. Brain Research Bulletin 17, 615619.CrossRefGoogle ScholarPubMed
Houpt, T. R. (1983). The controls of food intake in the pig. In Physiologie Digestive Chez le Porc. pp. 1728. [Laplace, J. P., Corring, T. and Rerat, A., editors]. Paris: INRA.Google Scholar
Houpt, T. R. (1985). Control at the gut level. Proceedings of the Nutrition Society 44, 323330.Google Scholar
Houpt, T. R., Anika, S. M. & Houpt, K. A. (1979). Preabsorptive intestinal satiety controls of food intake in pigs. American Journal of Physiology 236, R328R337.Google ScholarPubMed
Houpt, T. R., Baldwin, B. A. & Houpt, K. A. (1983 a). Effects of duodenal osmotic loads on spontaneous meals in pigs. Physiology and Behavior 30, 787796.CrossRefGoogle ScholarPubMed
Houpt, T. R., Houpt, K. A. & Swan, A. A. (1983 b). Duodenal osmoconcentration and food intake in pigs after ingestion of hypertonic nutrients. American Journal of Physiology 245, R181R189.Google ScholarPubMed
Howes, G. A. & Forbes, J. M. (1987 a). A role for the liver in the effects of glucagon on food intake in the domestic fowl. Physiology and Behavior 39, 587592.CrossRefGoogle ScholarPubMed
Howes, G. A. & Forbes, J. M. (1987 b). Food intake of domestic fowl injected with adrenergic agonists and antagonists into the hepatic portal vein. Pharmacology, Biochemistry and Behavior 26, 757764.CrossRefGoogle ScholarPubMed
Inokuchi, A., Oomura, Y. & Nishimura, H. (1984). Effect of intracerebroventricularly infused glucagon on feeding behavior. Physiology and Behavior 33, 397400.CrossRefGoogle ScholarPubMed
Jen, K. L. C., Bodkin, N. L., Metzger, B. L. & Hansen, B. C. (1985). Nutrient composition: Effects on appetite in monkeys with oral factors held constant. Physiology and Behavior 34, 655660.CrossRefGoogle ScholarPubMed
Kanarek, R. B., Marks-Kaufman, R. & Lipeles, P. I. (1980). Increased carbohydrate intake as a function of insulin administration in rats. Physiology and Behavior 25, 779782.CrossRefGoogle ScholarPubMed
Kaufman, L. W., Collier, G. & Squibb, R. L. (1978). Selection of an adequate protein-carbohydrate ratio by domestic chicks. Physiology and Behavior 20, 339344.CrossRefGoogle Scholar
Kushner, L. R. & Mook, D. G. (1984). Behavioral correlates of oral and postingestive satiety in the rat. Physiology and Behavior 33, 713718.CrossRefGoogle ScholarPubMed
Lacy, M. P., Van Krey, H. P., Skewes, P. A. & Denbow, D. M. (1985). Effect of intrahepatic glucose infusions on feeding in heavy and light breed chicks. Poultry Science 64, 751756.CrossRefGoogle ScholarPubMed
Lacy, M. P., Van Krey, H. P., Skewes, P. A. & Denbow, D. M. (1986). Food intake in the domestic fowl, effects of intrahepatic lipid and amino acid infusion. Physiology and Behavior 36, 533538.CrossRefGoogle Scholar
Langhans, W., Damaske, U. & Scharrer, E. (1984 a). Subcutaneous glycerol injection fails to reduce food intake in rats fed on a high protein diet. Physiology and Behavior 32, 785790.CrossRefGoogle ScholarPubMed
Langhans, W., Duss, M. & Scharrer, E. (1987). Decreased feeding and supraphysiological plasma levels of glucagon after glucagon injection in rats. Physiology and Behavior 41, 3135.CrossRefGoogle ScholarPubMed
Langhans, W., Egli, G. & Scharrer, E. (1985 a). Regulation of food intake by hepatic oxidative metabolism. Brain Research Bulletin 15, 425428.CrossRefGoogle ScholarPubMed
Langhans, W., Egli, G. & Scharrer, E. (1985 b). Selective hepatic vagotomy eliminates the hypophagic effect of different metabolites. Journal of the Autonomic Nervous System 13, 255262.CrossRefGoogle ScholarPubMed
Langhans, W., Geary, N. & Scharrer, E. (1982 a). Liver glycogen content decreases during meals in rats. American Journal of Physiology 243, R450R453.Google ScholarPubMed
Langhans, W., Pantel, K., Muller-Schell, W., Eggenberger, E. & Scharrer, E. (1984 b). Hepatic handling of pancreatic glucagon and glucose during meals in rats. American Journal of Physiology 247, R827R832.Google ScholarPubMed
Langhans, W., Pantel, K. & Scharrer, E. (1985 c). Dissociation of epinephrine's hyperglycemic and anorectic effect. Physiology and Behavior 34, 457464.CrossRefGoogle ScholarPubMed
Langhans, W., Pantel, K. & Scharrer, E. (1985 d). Ketone kinetics and D-(—)-3-hydroxybutyrate-induced inhibition of feeding in rats. Physiology and Behavior 34, 579582.CrossRefGoogle Scholar
Langhans, W. & Scharrer, E. (1986). Evidence for a vagally mediated satiety signal derived from hepatic fatty acid oxidation. Journal of the Autonomic Nervous System 18, 1318.CrossRefGoogle Scholar
Langhans, W. & Scharrer, E. (1987 a). Role of fatty acid oxidation in control of meal pattern. Behavioral and Neural Biology 47, 716.CrossRefGoogle ScholarPubMed
Langhans, W. & Scharrer, E. (1987 b). Evidence for a role of the sodium pump of hepatocytes in the control of food intake. Journal of the Autonomic Nervous System 20, 199205.CrossRefGoogle ScholarPubMed
Langhans, W., Zieger, V., Scharrer, E. & Geary, N. (1982 b). Stimulation of feeding in rats by intraperitoneal injection of antibodies to glucagon. Science 218, 894896.CrossRefGoogle ScholarPubMed
Le Magnen, J. & Devos, M. (1980). Parameters of the meal pattern in rats, their assessment and physiological significance. Neuroscience and Biobehavioral Reviews 4, Suppl. 1, 111.CrossRefGoogle ScholarPubMed
Le Magnen, J. & Devos, M. (1984). Meal to meal energy balance in rats. Physiology and Behavior 32, 3944.CrossRefGoogle ScholarPubMed
Le Magnen, J. & Tallon, .S (1966). Spontaneous periodicity of meal taking in the white rat. Journal of Physiology, Paris 58, 323349.Google Scholar
Leibowitz, S. F., Weiss, G. F., Yee, F. & Tretter, J. B. (1985). Noradrenergic innervation of the paraventricular nucleus, specific role in control of carbohydrate ingestion. Brain Research Bulletin 14, 561567.CrossRefGoogle ScholarPubMed
Leung, P. M. B. & Rogers, Q. R. (1986). Effect of amino acid imbalance and deficiency on dietary choice patterns of rats. Physiology and Behavior 37, 747758.CrossRefGoogle ScholarPubMed
Liebelt, R. A., Ichinoe, S. & Nicholson, N. (1965). Regulatory influences of adipose tissue on food intake and body weight. Annals of the New York Academy of Sciences 131, 559582.CrossRefGoogle ScholarPubMed
Louis-Sylvestre, J. & Le Magnen, J. (1980). A fall in blood glucose level precedes meal onset in free-feeding rats. Neuroscience and Biobehavioral Research 4, Suppl. 1, 1316.CrossRefGoogle ScholarPubMed
McHugh, P. R. & Moran, T. H. (1986). The inhibition of feeding produced by direct intraintestinal infusion of glucose. Is this satiety? Brain Research Bulletin 17, 415418.CrossRefGoogle ScholarPubMed
McLaughlin, C. A., Gingerich, R. L. & Baile, C. A. (1984). Decreased food intakes and body weights in rats immunized against pancreatic glucagon. Physiology and Behavior 33, 723732.CrossRefGoogle ScholarPubMed
McLaughlin, C. L., Gingerich, R. L. & Baile, C. A. (1986). Role of glucagon in the control of food intake in the Zucker obese and lean rat. Brain Research Bulletin 17, 419426.CrossRefGoogle Scholar
Maloiy, G. M. O. & Clemens, E. T. (1980). Gastrointestinal osmolality, electrolyte and organic acid composition in five species of East African herbivorous mammals. Journal of Animal Science 51, 917924.CrossRefGoogle ScholarPubMed
Martin, J. R. (1983). Alterations in ingestive behavior following experimental portacaval anastomosis in rats. Physiology and Behavior 30, 749756.CrossRefGoogle ScholarPubMed
Martin, J. R., Novin, D. & Vanderweele, D. A. (1978). Loss of glucagon suppression of feeding following vagotomy in rats. American Journal of Physiology 234, E314318.Google Scholar
Maurice, D. V., Whisehunt, J. E., Jones, J. E. & Smoak, K. D. (1983). Effect of lipectomy on control of feed intake and homeostasis of adipose tissue in chickens. Poultry Science 62, 1466.Google Scholar
Mei, N. (1985). Intestinal chemosensitivity. Physiological Reviews 65, 211237.CrossRefGoogle ScholarPubMed
Mook, D. G., Brane, J. A., Kushner, L. R. & Whitt, L. R. (1983). Glucose solution intake in the rat, the specificity of postingestive satiety. Appetite 4, 19.CrossRefGoogle ScholarPubMed
Mosier, H. D. & Jansons, R. A. (1987). Lack of synchrony between feeding activity and pulsatile growth hormone secretion in rats. Physiology and Behavior 39, 183186.CrossRefGoogle ScholarPubMed
Nicolaidis, S. & Rowland, N. (1976). Metering of intravenous versus oral nutrients. American Journal of Physiology 231, 661668.CrossRefGoogle ScholarPubMed
Niijima, A. (1981). Neurophysiological evidence for hepatic glucose-sensitive afferents. Commentary on ‘The current status of hepatic theory of food intake control’. Appetite 2, 151152.CrossRefGoogle ScholarPubMed
Novin, D. (1983). The integration of visceral information in the control of feeding. Journal of the Autonomic Nervous System 9, 207220.CrossRefGoogle ScholarPubMed
Novin, D., Sanderson, J. D. & Vanderweele, D. A. (1974). The effect of isotonic glucose on eating as a function of feeding condition and infusion site. Physiology and Behavior 13, 37.CrossRefGoogle ScholarPubMed
Oetting, R. L. & Vanderweele, D. A. (1985). Insulin suppresses intake without inducing illness in sham feeding rats. Physiology and Behavior 34, 557562.CrossRefGoogle ScholarPubMed
Plata-Salaman, C. R., Oomura, Y. & Shimizu, N. (1986). Dependence of food intake on acute and chronic ventricular administration of insulin. Physiology and Behavior 37, 717734.CrossRefGoogle ScholarPubMed
Reidelberger, R. D., Kalogeris, T. J., Leung, P. M. B. & Mendel, V. E. (1983). Postgastric satiety in the sham-feeding rat. American Journal of Physiology 244, R872R881.Google ScholarPubMed
Reidelberger, R. D., Kalogeris, T. J. & Solomon, T. E. (1986). Comparative effects of caerulein on food intake and pancreatic secretion in dogs. Brain Research Bulletin 17, 445449.CrossRefGoogle ScholarPubMed
Richter, C. (1942). Increased dextrose appetite of normal rats treated with insulin. American Journal of Physiology 135, 781787.CrossRefGoogle Scholar
Ritter, R. C. & Edwards, G. L. (1986). Dorsomedial hindbrain participation in control of food intake. In Feeding Behavior: Neural and Humoral Controls, pp. 131161 [Ritter, R. C., Ritter, S. and Barnes, C. D., editors]. Orlando: Academic Press.CrossRefGoogle Scholar
Ritter, S. (1986). Glucoprivation and the glucoprivic control of food intake. In Feeding Behavior: Neural and Humoral Controls, pp. 271313 [Ritter, R. C., Ritter, S. and Barnes, C. D., editors]. Orlando: Academic Press.CrossRefGoogle Scholar
Ritter, S., Weatherford, S. C. & Stone, S. L. (1986). Glucagon-induced inhibition of feeding is impaired by hepatic portal alloxan injection. American Journal of Physiology 250, R682R690.Google ScholarPubMed
Rusby, A. A., Anil, M. H., Chatterjee, P. & Forbes, J. M. (1987). The effects of intraportal infusion of glucose and lysine on the food intake of intact and hepatic vagotomized chickens. Appetite 9, 6572.CrossRefGoogle ScholarPubMed
Rusby, A. A. & Forbes, J. M. (1987). Effects of infusions of lysine, leucine and ammonium chloride into the hepatic portal vein of chickens on voluntary food intake. British Journal of Nutrition 58, 325331.CrossRefGoogle ScholarPubMed
Russek, M. (1963). Participation of hepatic glucoreceptors in the control of food intake. Nature 197, 7980.CrossRefGoogle Scholar
Russek, M. (1970). Gluco-ammonia receptors in liver. Federation Proceedings 29, 658.Google Scholar
Russek, M. (1981). Reply to commentary on ‘Current status of the hepatostatic theory of food intake control’. Appetite 2, 157162.CrossRefGoogle ScholarPubMed
Russek, M. & Racotta, R. (1980). A possible role of adrenaline and glucagon in the control of food intake. In Frontiers of Hormone Research, pp. 120137 [Van Wimersma, T. B. S., editor]. Basel: Karger.Google Scholar
Savory, C. J. & Gentle, M. J. (1983). Effects of food deprivation, strain, diet and age on feeding responses to fowls to intravenous injection of cholecystokinin. Appetite 4, 165177.CrossRefGoogle ScholarPubMed
Savory, C. J. & Hodgkiss, J. P. (1984). Influence of vagotomy in domestic fowls on feeding activity, food passage, and satiety effects of two peptides. Physiology and Behavior 33, 937944.CrossRefGoogle ScholarPubMed
Scharrer, E. & Langhans, W. (1986). Control of food intake by fatty acid oxidation. American Journal of Physiology 250, R1003R1006.Google ScholarPubMed
Sclafani, A. & Kramer, T. H. (1985). Aversive effects of vagotomy in the rat. A conditioned taste aversion analysis. Physiology and Behavior 34, 721726.CrossRefGoogle Scholar
Shaobi, T. S. & Forbes, J. M. (1987). Feeding responses to infusions of glucose solutions into the duodenum of chickens, and the influences of pre-fasting or vagotomy. British Poultry Science 28, 407413.CrossRefGoogle ScholarPubMed
Shimizu, N., Oomura, Y., Novin, D., Grijalva, C. V. & Cooper, P. H. (1983). Functional correlations between lateral hypothalamic glucose-sensitive neurons and hepatic portal glucose-sensitive units in rat. Brain Research 265, 4954.CrossRefGoogle ScholarPubMed
Shor-Posner, G., Grinker, J. A., Marinescu, C., Brown, O. & Leibowitz, S. F. (1986). Hypothalamic serotonin in the control of meal patterns and macronutrient selection. Brain Research Bulletin 17, 663671.CrossRefGoogle ScholarPubMed
Shurlock, T. G. H. & Forbes, J. M. (1981 a). Factors affecting food intake in the domestic chicken, The effect of infusions of nutritive and non-nutritive substances into the crop and duodenum. British Poultry Science 22, 323331.CrossRefGoogle ScholarPubMed
Shurlock, T. G. H. & Forbes, J. M. (1981 b). Evidence for hepatic glucostatic regulation of food intake in the domestic chicken and its interaction with gastrointestinal control. British Poultry Science 22, 333346.CrossRefGoogle Scholar
Shurlock, T. G. H. & Forbes, J. M. (1984). Effects on voluntary intake of infusions of glucose and amino acids into the hepatic portal vein of chickens. British Poultry Science 25, 303308.CrossRefGoogle ScholarPubMed
Silverman, H. J. & Zucker, I. (1976). Absence of post-fast food compensation in the golden hamster (Mesocricetus auratus). Physiology and Behavior 17, 271283.CrossRefGoogle ScholarPubMed
Skinner, B. F. (1932). Drive and reflex strength. Journal of General Psychology 6, 2237.CrossRefGoogle Scholar
Smith, G. P., Jerome, C., Cushin, B. J., Eterno, R. & Simansky, K. J. (1981). Abdominal vagotomy blocks the satiety effect of cholecystokinin in the rat. Science 13, 10361037.CrossRefGoogle Scholar
Steffens, A. B., Van der Gugten, J., Godeke, J., Luiten, P. G. M. & Strubbe, J. H. (1986). Meal-induced increases in parasympathetic and sympathetic activity elicit simultaneous rises in plasma insulin and free fatty acids. Physiology and Behavior 37, 119122.CrossRefGoogle ScholarPubMed
Stein, L. J. & Woods, S. C. (1981). Cholecystokinin and bombesin act independently to decrease food intake in rats. Peptides 2, 431436.CrossRefGoogle Scholar
Stephens, D. B. (1985). Influence of intraduodenal glucose on meal size and its modification by 2-deoxy-D-glucose or vagotomy in hungry pigs. Quarterly Journal of Experimental Physiology 70, 129135.CrossRefGoogle ScholarPubMed
Stricker, E. M. & McCann, M. J. (1985). Visceral factors in the control of food intake. Brain Research Bulletin 14, 687692.CrossRefGoogle ScholarPubMed
Stricker, E. M., Rowland, N., Saller, C. F. & Friedman, M. I. (1977). Homeostasis during hypoglycemia: Central control of adrenal secretion and peripheral control of feeding. Science 196, 7981.CrossRefGoogle ScholarPubMed
Strubbe, J. H. & Steffens, A. B. (1977). Blood glucose levels in portal and peripheral circulation and their relation to food intake in the rat. Physiology and Behavior 19, 303307.CrossRefGoogle ScholarPubMed
Strubbe, J. H., Steffens, A. B. & De Ruiter, L. (1977). Plasma insulin and the time pattern of feeding in the rat. Physiology and Behavior 18, 8186.CrossRefGoogle ScholarPubMed
Taylor, C. G. & Forbes, J. M. (1988). Food intake and growth of broiler chickens following removal of the abdominal fat pad. Proceedings of the Nutrition Society. (In the Press.)Google Scholar
Tindall, J. S., Knaggs, G. S., Hart, I. C. & Blake, L. A. (1978). Release of growth hormone in lactating and non-lactating goats in relation to behaviour, stages of sleep, electroencephalograms, environmental stimuli and levels of prolactin, insulin, glucose and free fatty acids in the circulation. Journal of Endocrinology 76, 333346.CrossRefGoogle Scholar
Toates, F. M. & Booth, D. A. (1974). Control of food intake by energy supply. Nature 251, 710711.CrossRefGoogle ScholarPubMed
Tordoff, M. G. & Friedman, M. I. (1986). Hepatic portal glucose infusions decrease food intake and increase food preference. Amefican Journal of Physiology 251, R192Rl96.Google ScholarPubMed
Tordoff, M. G. & Novin, D. (1982). Coeliac vagotomy attenuates the ingestive responses to epinephrine and hypertonic saline but not insulin, 2 deoxy-D-glucose or polyethylene glycol. Physiology and Behavior 29, 605613.CrossRefGoogle ScholarPubMed
Tordoff, M. G., Novin, D. & Russek, M. (1982). Effects of hepatic denervation on the anorexic response to epinephrine, amphetamine and lithium chloride, a behavioral identification of glucostatic afferents. Journal of Comparative and Physiological Psychology 96, 361365.CrossRefGoogle ScholarPubMed
Tordoff, M. G., Tepper, B. J. & Friedman, M. I. (1987). Food flavour preferences produced by drinking glucose and oil in normal and diabetic rats: Evidence for conditioning based on fuel oxidation. Physiology and Behavior 41, 481487.CrossRefGoogle ScholarPubMed
Vandermeerschen-Doize, F., Bouchat, J. C., Bouckoms-Vandermeir, M. A. & Paquay, R. (1983). Effects of long-term ad libitum feeding on plasma lipid components and blood glucose, β-hydroxybutyrate and insulin concentrations in lean adult sheep. Reproduction, Nutrition, Développement 23, 5163.CrossRefGoogle ScholarPubMed
Vandermeerschen-Doize, F. & Paquay, R. (1984). Effects of continuous long-term intravenous infusion of long-chain fatty acids on feeding behaviour and blood components of adult sheep. Appetite 5, 137146.CrossRefGoogle ScholarPubMed
Vanderweele, D. A., Macrum, B. L. & Oetting, R. L. (1986). Glucagon, satiety from feeding and liver/pancreatic interactions. Brain Research Bulletin 17, 539543.CrossRefGoogle ScholarPubMed
Vasilatos, R. & Wangsness, P. J. (1980). Changes in concentrations of insulin, growth hormone and metabolites in plasma with spontaneous feeding in lactating dairy cows. Journal of Nutrition 110, 14791489.CrossRefGoogle ScholarPubMed
Weatherford, S. C. & Ritter, S. (1986). Glucagon satiety, diurnal variation after hepatic branch vagotomy or intraportal alloxan. Brain Research Bullerin 17, 545550.CrossRefGoogle ScholarPubMed
Webster, N. (1915). A Dictionary of the English Language, Springfield, Mass: Merriam.Google Scholar
Weick, B. G. & Ritter, S. (1986). Dose-related suppression of feeding by intraportal glucagon infusion in the rat. American Journal of Physiology 250, R676R681.Google ScholarPubMed
Wirtshafter, D. & Davis, J. D. (1977). Body weight reduction by chronic glycerol treatment. Science 198, 12711274.CrossRefGoogle Scholar
Woods, S. C., Decke, E. & Vasselli, J. R. (1974). Metabolic hormones and regulation of body weight. Psychological Reviews 81, 2643.CrossRefGoogle ScholarPubMed
Woods, S. C., Stein, L. J., McKay, L. D. & Porte, D. (1984). Suppression of food intake by intravenous nutrients and insulin in the baboon. American Journal of Physiology 247, R393401.Google ScholarPubMed
Woods, S. C., Porte, D., Strubbe, J. H. & Steffens, A. B. (1986). The relationships among body fat, feeding, and insulin. In Feeding Behavior: Neural and Humoral Controls, pp. 315327 [Ritter, R. C., Ritter, S. and Barnes, C. D., editors]. Orlando: Academic Press.CrossRefGoogle Scholar