Hostname: page-component-5c6d5d7d68-wtssw Total loading time: 0 Render date: 2024-08-16T13:53:49.813Z Has data issue: false hasContentIssue false

Analysis of the preservation of community structure in assemblages of fossil mammals

Published online by Cambridge University Press:  08 April 2016

John Damuth*
Affiliation:
Committee on Evolutionary Biology, University of Chicago, Chicago, Illinois 60637

Abstract

The degree to which the relative abundances of the species in a fossil assemblage represent those in the living community from which it came is an indication of the fidelity of the assemblage in preserving most of the aspects of community structure that we may hope to find in the fossil record. I have developed a model for the formation of attritional fossil mammal assemblages that shows that the logarithm of the number of individuals of each species in an ideal unbiased assemblage, when regressed on the logarithm of body mass, will exhibit a slope of approximately −1.05 ± 0.25 (approximate 95% confidence interval). This value is based upon ubiquitous scaling relationships of population density and turnover rate with body mass among extant mammals. These relationships are the results of widespread energetic and metabolic regularities in community structure and physiology and can be expected to have been essentially the same in the remote past. The slope of −1.05 provides for the first time a reference standard for community structure of sufficient generality for use in the analysis of this aspect of fossil assemblages. We can use this value as a sort of “null hypothesis” of no bias against which we can compare actual fossil assemblages.

Analysis of some promising assemblages reveals that they exhibit badly biased relative abundances. However, it is likely that in these cases we can explain this bias as almost entirely the result of pre-burial differential destruction of the carcasses of different-sized species.

The combination of this new, biological approach with the largely physical approaches of taphonomy and sedimentology will allow us to ask more specific questions about bias in fossil assemblages, avoiding circular arguments. We can now distinguish, in a large number of situations, assemblages that preserve reliable community-structure information from those that do not.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Andersen, J. 1953. Analysis of a Danish roe-deer population. Danish Rev. Game Biol. 2:129155.Google Scholar
Barker, R. T. 1980. Dinosaur heresy—dinosaur renaissance: why we need endothermic archosaurs for a comprehensive theory of bioenergetic evolution. Pp. 351462. In: Thomas, R. D. K. and Olson, E. C., eds. A Cold Look at the Warm-Blooded Dinosaurs. AAAS Selected Symposium Series 28. Westview Press; Boulder, Colorado.Google Scholar
Banse, K. and Mosher, S. 1980. Adult body mass and annual production/biomass relationships of field populations. Ecol. Monogr. 50:355379.Google Scholar
Behrensmeyer, A. K. 1975. Taphonomy and paleoecology of Plio-Pleistocene vertebrate assemblages east of Lake Rudolf, Kenya. Harvard Univ. Bull. Mus. Comp. Zool. 146:473578.Google Scholar
Behrensmeyer, A. K. 1978. Taphonomic and ecologic information from bone weathering. Paleobiology. 4:150162.Google Scholar
Behrensmeyer, A. K. and Hill, A. P., eds. 1980. Fossils in the Making: Vertebrate Taphonomy and Paleoecology. 338 pp. Univ. Chicago Press; Chicago, Illinois.Google Scholar
Behrensmeyer, A. K., Western, D., and Dechant Boaz, D. 1979. New perspectives in vertebrate paleoecology from a Recent bone assemblage. Paleobiology. 5:1221.Google Scholar
Béland, P. and Russell, D. A. 1980. Dinosaur metabolism and predator/prey ratios in the fossil record. Pp. 85102. In: Thomas, R. D. K. and Olson, E. C., eds. A Cold Look at the Warm-Blooded Dinosaurs. AAAS Selected Symposium Series 28. Westview Press; Boulder, Colorado.Google Scholar
Case, T. J. 1978. On the evolution and adaptive significance of postnatal growth rates in the terrestrial vertebrates. Q. Rev. Biol. 53:243282.CrossRefGoogle ScholarPubMed
Caughley, G. 1967. Calculation of population mortality rate and life expectancy for thar and kangaroos from the ratio of juveniles to adults. New Zealand J. Sci. 10:578584.Google Scholar
Caughley, G. 1970. Population statistics of chamois. Mammalia. 34:194199.Google Scholar
Caughley, G. 1971. Demography, fat reserves, and body size of a population of red deer Cervus elaphus in New Zealand. Mammalia. 35:369383.CrossRefGoogle Scholar
Clark, J., Beerbower, J. R., and Kietzke, K. K. 1967. Oligocene sedimentation, stratigraphy, paleoecology, and paleoclimatology in the Big Badlands of South Dakota. Fieldiana; Geol. Mem. 5:1158.Google Scholar
Damuth, J. 1981. Population density and body size in mammals. Nature. 290:699700.Google Scholar
Damuth, J. 1982. The evaluation of the degree of community structure preserved in assemblages of fossil mammals. 248 pp. Ph.D. dissertation, Univ Chicago; Chicago, Illinois.Google Scholar
Dodson, P. 1973. The significance of small bones in paleoecological interpretation. Univ. Wyoming Contrib. Geol. 12:1519.Google Scholar
Efremov, I. A. 1940. Taphonomy: a new branch of paleontology. Pan-Am. Geol. 74:8193.Google Scholar
Fairall, N. 1969. The use of the eye-lens technique in deriving age structure and life table of an impala population. Koedoe. 12:9096.Google Scholar
Farlow, J. O. 1976. A consideration of the trophic dynamics of a Late Cretaceous large-dinosaur community. Ecology. 57:841857.CrossRefGoogle Scholar
Fenchel, T. 1974. Intrinsic rate of natural increase: the relationship with body size. Oecologia. 14:317326.Google Scholar
Fleming, T. H. 1971. Population ecology of three species of neotropical rodents. Univ. Michigan, Misc. Publ. Mus. Zool. 143:177.Google Scholar
French, N. R., Stoddart, D. M., and Bobek, B. 1975. Patterns of demography in small mammal populations. Pp. 73102. In: Golley, F. B., Petrusewicz, K, and Ryszkowsky, L., eds. Small Mammals: Their Productivity and Population Dynamics. I.B.P. 5. Cambridge Univ. Press; Cambridge.Google Scholar
Grayson, D. K. 1978a. Minimum numbers and sample size in vertebrate faunal analysis. Am. Antiquity. 43:5365.Google Scholar
Grayson, D. K. 1978b. Reconstructing mammalian communities: a discussion of Shotwell's method of paleoecological analysis. Paleobiology. 4:7781.Google Scholar
Hanson, C. B. 1980. Fluvial taphonomic processes: models and experiments. Pp. 156181. In: Behrensmeyer, A. K. and Hill, A. P., eds. Fossils in the Making: Vertebrate Taphonomy and Paleoecology. Univ. Chicago Press; Chicago, Illinois.Google Scholar
Hemmingsen, A. M. 1950. The relation of standard (basal) energy metabolism to total fresh weight of living organisms. Rep. Steno Memorial Hospital. 4:758.Google Scholar
Hemmingsen, A. M. 1960. Energy metabolism as related to body size and respiratory surfaces, and its evolution. Rep. Steno Memorial Hospital. 9:1110.Google Scholar
Holtzman, R. C. 1979. Maximum likelihood estimation of fossil assemblage composition. Paleobiology. 5:7789.Google Scholar
Jarvis, J. V. M. 1973. The structure of a population of mole-rats, Tachyoryctes splendens (Rodentia: Rhizomyidae). J. Zool., London. 171:114.Google Scholar
Kendall, M. G. and Stuart, A. 1973. The Advanced Theory of Statistics. Vol. 2. 3rd ed.723 pp. Hafner; New York.Google Scholar
Kleiber, M. 1975. The Fire of Life. 2nd ed.456 pp. Krieger; New York.Google Scholar
Laws, R. M. 1966. Age criteria for the African elephant, Loxodonta a. africana. E. Afr. Wildl. J. 4:137.CrossRefGoogle Scholar
Laws, R. M. 1968. Dentition and ageing of the hippopotamus. E. Afr. Wildl. J. 6:1952.CrossRefGoogle Scholar
Lindstedt, S. L. and Calder, W. A. III. 1981. Body size, physiological time, and longevity of homeothermic animals. Q. Rev. Biol. 56:116.CrossRefGoogle Scholar
Lord, R. D. Jr. 1961. Mortality rates of cottontail rabbits. J. Wildl. Manage. 25:3340.Google Scholar
MacArthur, R. H. 1957. On the relative abundance of bird species. Proc. Natl. Acad. Sci., U.S.A. 43:293295.Google Scholar
Margalef, R. 1968. Perspectives in Ecological Theory. 111 pp. Univ. Chicago Press; Chicago, Illinois.Google Scholar
May, R. M. 1975. Patterns of species abundance and diversity. Pp. 81120. In: Cody, M. L. and Diamond, J. M., eds. Ecology and the Evolution of Communities. Belknap Press; Cambridge, Massachusetts.Google Scholar
Olson, E. C. 1980. Taphonomy: its history and role in community evolution. Pp. 519. In: Behrensmeyer, A. K. and Hill, A. P., eds. Fossils in the Making: Vertebrate Taphonomy and Paleoecology. Univ. Chicago Press; Chicago, Illinois.Google Scholar
Petersen, C. H. 1977. The paleoecological significance of undetected short-term variability. J. Paleontol. 51:976981.Google Scholar
Radda, A. 1968. Populationstudien an Rötelmäusen (Cleithrionomys glareolus Screiber, 1780) durch Markierungsfang in Niederösterreich. Oecologia. 1:219235.CrossRefGoogle Scholar
Radda, A., Pretzmann, G., and Steiner, H. M. 1969. Bionomische und ökologische Studien an österreichischen Populationen der Gelbhalsmaus (Apodemus flavicollis Melchior 1834) durch Markierungsfang. Oecologia. 3:351373.Google Scholar
Radinsky, L. B. 1978. Evolution of brain size in carnivores and ungulates. Am. Nat. 112:815831.Google Scholar
Schram, F. R. and Turnbull, W. D. 1967. Structural composition and dental variations in the murids of the Broom Cave fauna, Late Pleistocene, Wombeyan Caves area, N.S.W. Australia. Rec. Austr. Mus. 28:124.Google Scholar
Shotwell, J. A. 1955. An approach to the paleoecology of mammals. Ecology. 36:327337.Google Scholar
Shotwell, J. A. 1958. Inter-community relationships in Hemphillian (mid-Pliocene) mammals. Ecology. 39:271282.CrossRefGoogle Scholar
Shotwell, J. A. 1963. The Juntura Basin: studies in earth history and paleoecology. Trans. Am. Philos. Soc. (n.s.). 53:177.Google Scholar
Sokal, R. R. and Rohlf, F. J. 1969. Biometry: the Principles and Practice of Statistics in Biological Research. 776 pp. W. H. Freeman; San Francisco, California.Google Scholar
Spinage, C. A. 1970. Population dynamics of the Uganda defassa waterbuck (Kobus defassa ugandae Neumann) in the Queen Elizabeth Park, Uganda. J. Anim. Ecol. 39:5178.CrossRefGoogle Scholar
Spinage, C. A. 1972. African ungulate life tables. Ecology. 53:645652.Google Scholar
Taber, R. D. and Dasman, R. F. 1957. The dynamics of three natural populations of the deer Odocoileus hemionus columbianus. Ecology. 38:233246.Google Scholar
Tryon, C. A. and Snyder, D. P. 1973. Biology of the eastern chipmunk, Tamias striatus: life tables, age distributions, and trends in population numbers. J. Mammal. 54:145168.Google Scholar
Van Valen, L. 1964. Relative abundance of species in some fossil mammal faunas. Am. Nat. 98:109116.CrossRefGoogle Scholar
Van Valen, L. and Sloan, R. E. 1965. The earliest primates. Science. 150:743745.Google Scholar
Voorhies, M. R. 1969. Taphonomy and population dynamics of an early Pliocene vertebrate fauna, Knox County, Nebraska. Univ. Wyoming Contrib. Geol., Spec. Pap. 1:169.Google Scholar
Voorhies, M. R. 1970. Sampling difficulties in reconstructing Late Tertairy mammalian communities. Pp. 454468. In: Yochelson, E., ed. Proceedings of the North American Paleontological Congress. Vol. 6. Allen Press; Lawrence, Kansas.Google Scholar
Western, D. 1979. Size, life history, and ecology in mammals. Afr. J. Ecol. 17:185204.Google Scholar
Western, D. 1980. Linking the ecology of past and present mammal communities. Pp. 4154. In: Behrensmeyer, A. K. and Hill, A. P., eds. Fossils in the Making: Vertebrate Taphonomy and Paleoecology. Univ. Chicago Press; Chicago, Illinois.Google Scholar
Wolff, R. G. 1971. Paleoecology of a Late Pleistocene (Rancholabrean) vertebrate fauna from Rodeo, California. 136 pp. Ph.D. dissertation. Univ. California; Berkeley, California.Google Scholar
Wolff, R. G. 1973. Hydrodynamic sorting and ecology of a Pleistocene mammalian assemblage from California (U.S.A.). Palaeogeogr., Palaeoclimatol., Palaeoecol. 13:91101.Google Scholar
Wolff, R. G. 1975. Sampling and sample size in ecological analyses of fossil mammals. Paleobiology. 1:195204.CrossRefGoogle Scholar
Wood, D. H. 1980. The demography of a rabbit population in an arid region of New South Wales, Australia. J. Anim. Ecol. 49:5578.Google Scholar