Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-06T18:13:49.822Z Has data issue: false hasContentIssue false

Burrowing sculptures and life habits in Paleozoic lingulacean brachiopods

Published online by Cambridge University Press:  08 April 2016

Enrico Savazzi*
Affiliation:
Department of Paleobiology, Smithsonian Institution, Washington, D.C. 20560

Abstract

A range of specialized burrowing sculptures evolved convergently in at least one lingulid and in several obolid and lingulasmatid genera. The sculptures in Lingula punctata (Ordovician) indicate a burrowing process with the pedicle trailing behind the shell, similar to that of Recent Lingulidae. In the Obolidae and Lingulasmatidae, the orientation of the sculptures indicates a burrowing process with the pedicle oriented downward in the sediment. A burrowing mechanism in which the valves alternated in functioning as anchors, without active participation of the pedicle, is proposed for these forms. Infaunal life habits for several obolid genera are further indicated by the shell morphology and by the distribution of repaired shell damage.

The burrowing Obolidae are likely to have been adapted to relatively high-energy environments, which required frequent reburrowing in addition to escape (upward) burrowing. The increase in bioturbation in these environments in the Middle Paleozoic may have contributed to their extinction. The Lingulidae, instead, being mostly adapted to extreme environmental conditions, could survive in marginal niches which were not intensively exploited by actively burrowing organisms.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alexander, R. R. 1981. Predation scars preserved in Chesterian brachiopods: probable culprits and evolutionary consequences for the articulates. J. Paleontol. 55:192203.Google Scholar
Alexander, R. R. 1984. Comparative hydrodynamic stability of brachiopod shells on current-scoured arenaceus substrates. Lethaia. 17:1732.CrossRefGoogle Scholar
Ansell, A. D. 1962. Observations on burrowing in the Veneridae (Eulamellibranchia). Biol. Bull. 123:521530.Google Scholar
Awati, P. R. and Kshirsagar, G. R. 1957. Lingula from the western coast of India. Univ. Bombay Zool. Mem. 4:187.Google Scholar
Boshoff, P. H. 1968. A preliminary study on conchological physio-pathology, with special reference to Pelecypoda. Ann. Natal Mus. 20:199216.Google Scholar
Boss, K. J. 1965. Convergence of an acentric sculptural trait in the Tellinacea. Amer. Malacol. Union Bull. 32.Google Scholar
Brunton, H. 1966. Predation and shell damage in a Visean brachiopod fauna. Palaeontology. 9:355359.Google Scholar
Brunton, H. 1982. The functional morphology and palaeoecology of the Dinantian brachiopod Levitusia. Lethaia. 15:149167.Google Scholar
Carter, R. M. 1967. The shell ornament of Hysteroconcha and Hecuba (Bivalvia), a test case for inferential functional morphology. Veliger. 10:5971.Google Scholar
Cherns, L. 1979. The environmental significance of Lingula in the Ludlow Series of the Welsh Borderland and Wales. Lethaia. 12:3546.Google Scholar
Chuang, S. H. 1956. The ciliary feeding mechanism of Lingula unguis (L.). Proc. Zool. Soc. London. 127:167189.CrossRefGoogle Scholar
Cooper, G. A. 1956. Chazyan and related brachiopods. Smithsonian Misc. Coll. 127:11245.Google Scholar
Cowen, R. 1979. Functional morphology. Pp. 487492. In: Fairbridge, R. W. and Jablonski, D., eds. The Encyclopedia of Paleontology. Dowden, Hutchinson & Ross; Stroudsburg, Pa.CrossRefGoogle Scholar
Craig, G. Y. 1952. A comparative study of the ecology and palaeoecology of Lingula. Trans. Edinburgh Geol. Soc. 15:110120.Google Scholar
Emig, C. C. 1981. Implications de données récentes sur les Lingules actuelles dans les interprétations paleoecologiques. Lethaia. 14:151156.Google Scholar
Emig, C. C. 1983. Comportement experimental de Lingula anatina (Brachiopoda, Inarticule) dans divers substrats meublés (Baie de Mutsu, Japon). Mar. Biol. 75:207213.Google Scholar
Emig, C. C. 1984. Importance du sediment dans la distribution des Lingules. Lethaia. 17:115123.Google Scholar
Emig, C. C., Gall, J.-C., Pajaud, D., and Plaziat, J.-C. 1978. Réfléxions critiques sur l'ecologie et la systematique des lingules actuelles et fossiles. Geobios. 11:573609.Google Scholar
Fenton, C. L. and Fenton, M. A. 1932. Orientation and injury in the genus Atrypa. Am. Midl. Nat. 13:6374.Google Scholar
Ferguson, L. 1963. The paleoecology of Lingula squamiformis Phillips during a Scottish Mississippian marine transgression. J. Paleontol. 37:669681.Google Scholar
Fisher, D. C. 1985. Evolutionary morphology: beyond the analogous, the anecdotal, and the ad hoc. Paleobiology. 11:120138.CrossRefGoogle Scholar
Frey, E. 1982. Ophisaurus apodus (Lacertilia, Anguidae)—a stemming digger? N. Jb. Geol. Paläontol. Abh. 164:217221.Google Scholar
Gorjansky, V. U. 1969. (Inarticulate brachiopods of the Cambrian and Ordovician deposits of the northwestern Russian Platform). Min. Geol. RSFSR, Sev.-Zap. Terr. Geol. Uprav. 6:173 pp. Leningrad.Google Scholar
Grant, R. E. 1975. Methods and conclusions in functional analysis: a reply. Lethaia. 8:3134.CrossRefGoogle Scholar
Hakes, W. G. 1976. Trace fossils and depositional environment of four clastic units, upper Pennsylvanian megacyclothems, northeast Kansas. Univ. Kansas Paleontol. Contr. Art. 63:146.Google Scholar
Hammond, L. S. 1983. Experimental studies of salinity tolerance, burrowing behavior and pedicle regeneration in Lingula anatina (Brachiopoda, Inarticulata). J. Paleontol. 57:13111316.Google Scholar
Havlicek, V. 1982. Lingulacea, Paterinacea and Siphonotretacea (Brachiopoda) in the Lower Ordovician sequence of Bohemia. Sbor. Geol. Ved Paleontol. 25:982.Google Scholar
Henderson, R. A. 1974. Shell adaptation in acrothelid brachiopods to settlement on a soft substrate. Lethaia. 7:5761.Google Scholar
Hyman, L. H. 1959. The Invertebrates 5. 783 pp. McGraw-Hill; New York.Google Scholar
Jefferies, R. P. S., Savazzi, E., Seilacher, A., and Signor, P. 1981. Grabskulpturen. In: Reif, W.-E., ed. Funktionsmorphologie. Paläontol. Kursb. 1:111140.Google Scholar
Johnston, R. D. and Hirschfeld, O. S. 1920. The Lingulidae of the Queensland coast. Proc. Roy. Soc. Queensland. 31:4682.Google Scholar
Krause, F. F. and Rowell, A. J. 1975. Distribution and systematics of the inarticulate brachiopods of the Ordovician carbonate mud mound of Meiklejohn Peak, Nevada. Univ. Kansas Paleontol. Contr. 61:174.Google Scholar
LaBarbera, M. 1978. Brachiopod orientation to water movement: functional morphology. Lethaia. 11:6780.Google Scholar
Lindsay, D. T. 1982a. A new programmatic basis for shell pigment patterns in the bivalve mollusc Lioconcha castrensis (L.). Differentiation. 21:3236.Google Scholar
Lindsay, D. T. 1982b. Simulating molluscan shell pigment lines and states: implications for pattern diversity. Veliger. 24:297299.Google Scholar
McGhee, G. R. Jr. 1980. Shell geometry and stability strategies in the biconvex Brachiopoda. N. Jb. Geol. Paläontol. Mh. 1980:155184.Google Scholar
Morse, E. S. 1902. Observations on living Brachiopoda. Mem. Boston Soc. Nat. Hist. 5:313386.Google Scholar
Newall, G. 1970. A symbiotic relationship between Lingula and the coral Heliolithes in the Silurian. Pp. 335344. In: Crimes, T. P. and Harper, J. C., eds. Trace Fossils. Seel House Press; Liverpool.Google Scholar
Nichols, J. A., Rowe, G. T., Clifford, C. H., and Young, R. A., 1978. In situ experiments on the burial of marine invertebrates. J. Sedimentol. Petrol. 48:419425.Google Scholar
Paine, R. T. 1963. Ecology of the brachiopod Glottidia pyramidata. Ecol. Monogr. 33:255280.CrossRefGoogle Scholar
Paine, R. T. 1969. Growth and size distribution of the brachiopod Terebratalia transversa Sowerby. Pacific Sci. 23:337343.Google Scholar
Paine, R. T. 1970. The sediment occupied by Recent lingulid brachiopods and some paleoecological implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 7:2131.Google Scholar
Paul, C. R. C. 1975. A reappraisal of the paradigm method of functional analysis in fossils. Lethaia. 7:1521.CrossRefGoogle Scholar
Pickerill, R. K. 1973. Lingulasma tenuigranulata—paleoecology of a large Ordovician linguloid that lived within a strophomenidtrilobite community. Palaeogeogr. Palaeoclimatol. Paleoecol. 13:143156.Google Scholar
Raup, D. M. 1961. The geometry of coiling in gastropods. Proc. Natl. Acad. Sci. 47:602609.Google Scholar
Raup, D. M. 1962. Computer as aid in describing form in gastropod shells. Science. 138:150152.CrossRefGoogle ScholarPubMed
Raup, D. M. 1963. Analysis of shell form in gastropods. Geol. Soc. Am. Spec. Pap. 73:222.Google Scholar
Raup, D. M. 1966. Geometric analysis of shell coiling: general problems. J. Paleontol. 40:11781190.Google Scholar
Raup, D. M. 1967. Geometric analysis of shell coiling: coiling in ammonoids. J. Paleontol. 41:4365.Google Scholar
Raup, D. M. 1969. Modeling and simulation of morphology by computer. Proc. N. Am. Paleontol. Con. B:7183.Google Scholar
Raup, D. M. and Michelson, A. 1965. Theoretical morphology of the coiled shell. Science. 147:12941295.Google Scholar
Reif, W.-E. 1982. Functional morphology on the procrustean bed of the neutralism-selectionism debate. Notes on the constructional morphology approach. N. Jb. Geol. Paläontol. Abh. 164:4659.CrossRefGoogle Scholar
Reif, W.-E. 1983. Functional morphology and evolutionary ecology. Paläontol. Z. 57:255266.Google Scholar
Richards, R. P. and Dyson-Cobb, M. 1976. A Lingula-Heliolites association from the Silurian of Gotland, Sweden. J. Paleontol. 50:858864.Google Scholar
Richardson, J. R. 1981. Brachiopods and pedicles. Paleobiology. 7:8795.Google Scholar
Richardson, J. R. and Watson, J. 1975. Locomotory adaptations in a free-lying brachiopod. Science. 189:381382.Google Scholar
Röder, H. 1977. Zur Beziehung zwischen Konstruktion und Substrat bei mechanisch bohrenden Bohrmuscheln (Pholadidae, Teredinidae). Senckenbergiana Mar. 9:105213.Google Scholar
Rowell, A. J. 1965. Inarticulata. Treatise Invert. Paleontol. H:260297.Google Scholar
Rudwick, M. J. S. 1964. The inference of function from structure in fossils. Brit. J. Philos. Sci. 15:2740.Google Scholar
Rudwick, J. M. S. 1970. Living and fossil brachiopods. 199 pp. Hutchinson; London.Google Scholar
Sarycheva, T. G. 1949. (The study of damage to Carboniferous productoid shells). Akad. Nauk SSSP Paleontol. 20:280292. (In Russian).Google Scholar
Savazzi, E. 1981a. Barbatia mytiloides and the evolution of shell torsion in mytilid bivalves. Lethaia. 14:143150.CrossRefGoogle Scholar
Savazzi, E. 1981b. Functional morphology of the cuticular terraces in Ranina (Lophoranina) (brachyuran decapods; Eocene of NE Italy). N. Jb. Geol. Paläontol. Abh. 162:231243.Google Scholar
Savazzi, E. 1982a. Shell sculpture and burrowing in the bivalves Scapharca inaequivalvis and Acanthocardia tuberculata. Stuttgarter Beitr. Naturk. A (Biol.) 353:112.Google Scholar
Savazzi, E. 1982b. Burrowing habits and cuticular sculptures in Recent sand-dwelling brachyuran decapods from the Northern Adriatic Sea (Mediterranean). N. Jb. Geol. Paläontol. Abh. 163:369388.Google Scholar
Savazzi, E. 1982c. Commensalism between a boring mytilid bivalve and a soft bottom coral in the Upper Eocene of northern Italy. Paläontol. Z. 56:165175.Google Scholar
Savazzi, E. 1982d. Adaptations to tube dwelling in the Bivalvia. Lethaia. 15:275297.Google Scholar
Savazzi, E. 1983a. Aspects of the functional morphology of fossil and living invertebrates (bivalves and decapods). Acta Univ. Upps. Abstr. Upps. Diss. Fac. Sci. 680:121.Google Scholar
Savazzi, E. 1983b. Constructional morphology of cardiid bivalves: an overview. Boll. Soc. Paleontol. Ital. 22:8791.Google Scholar
Savazzi, E. 1984a. Adaptive significance of shell torsion in mytilid bivalves. Palaeontology. 27:307314.Google Scholar
Savazzi, E. 1984b. Functional morphology and autecology of Pseudoptera (bakevelliid bivalves, Upper Cretaceous of Portugal). Palaeogeogr. Palaeoclimatol. Palaeoecol. 46:313324.Google Scholar
Savazzi, E. 1985a. Functional morphology of the cuticular terraces in burrowing terrestrial brachyuran decapods. Lethaia. 18:147154.Google Scholar
Savazzi, E. 1985b. Adaptive themes in the cardiid bivalves. N. Jb. Geol. Paläontol. Abh. 170:291321.Google Scholar
Savazzi, E. In preparation. The morphogenesis of divaricate patterns in mollusc and brachiopod shells.Google Scholar
Savazzi, E., Jefferies, R. P. S., and Signor, P. W. III. 1982. Modification of the paradigm for burrowing ribs in various gastropods, crustaceans and calcichordates. N. Jb. Geol. Paläontol. Abh. 164:206217.Google Scholar
Schmalfuss, H. 1978. Structure, patterns and function of cuticular terraces in Recent and fossil arthropods. I. Decapod crustaceans. Zoomorphol. 90:1940.Google Scholar
Schmalfuss, H. 1981. Structure, patterns and function of cuticular terraces in trilobites. Lethaia. 14:311341.Google Scholar
Seilacher, A. 1961. Krebse in Brandungssand. Natur u. Volk. 91:257264.Google Scholar
Seilacher, A. 1972. Divaricate patterns in pelecypod shells. Lethaia. 5:325343.Google Scholar
Seilacher, A. 1973. Fabricational noise in adaptive morphology. Syst. Zool. 22:451465.Google Scholar
Signor, P. W. III. 1980. Shell sculpture aids burrowing in turritelliform gastropods. Geol. Soc. Am. Abstr. Prog. 12:522.Google Scholar
Signor, P. W. III. 1982. Constructional morphology of gastropod ratchet sculpture. N. Jb. Geol. Paläontol. Abh. 163:349368.Google Scholar
Stanley, S. M. 1969. Bivalve mollusk burrowing aided by discordant shell ornamentation. Science. 166:634635.Google Scholar
Stanley, S. M. 1970. Relation of shell form to life habits in the Bivalvia (Mollusca). Geol. Soc. Am. Mem. 125:1296.Google Scholar
Stanley, S. M. 1977. Coadaptation in the Trigoniidae, a remarkable family of burrowing bivalves. Palaeontology. 20:869899.Google Scholar
Stanley, S. M. 1981. Infaunal survival: alternative functions of shell ornamentation in the Bivalvia (Mollusca). Paleobiology. 7:384393.Google Scholar
Szmuc, E. J. 1970. The Devonian System. Pp. 923. In: Banks, P. O. and Feldmann, R. M., eds. A Guide to the Geology of Northeastern Ohio. N. Ohio Geol. Soc.Google Scholar
Szmuc, E. J., Osgood, R. G., and Meinke, D. W. 1976. Lingulichnites, a new trace fossil genus for lingulid brachiopod burrows. Lethaia. 9:163167.Google Scholar
Thayer, C. W. 1979. Biological bulldozers and the evolution of marine benthic communities. Science. 203:458461.CrossRefGoogle ScholarPubMed
Thayer, C. W. and Steele-Petrovic, H. M. 1975. Burrowing of the lingulid brachiopod Glottidia pyramidata: its ecologic and paleoecologic significance. Lethaia. 8:209221.Google Scholar
Trueman, E. R. and Ansell, A. D. 1969. The mechanisms of burrowing into soft substrata by marine animals. Oceanogr. Mar. Biol. Ann. Rev. 7:315366.Google Scholar
Trueman, E. R., Brand, A. R., and Davis, P. 1966. The dynamics of burrowing in some common littoral bivalves. J. Exp. Biol. 44:469492.Google Scholar
Vermeij, G. J. 1983. Traces and trends of predation, with special reference to bivalved animals. Palaeontology. 26:455465.Google Scholar
Waddington, C. H. and Cowe, R. H. 1969. Computer simulation of a molluscan pigmentation pattern. J. Theoret. Biol. 25:219.Google Scholar
Wallace, P. and Ager, D. V. 1966. Demonstration: flume experiments to test the hydrodynamic properties of certain spiriferid brachiopods with reference to their supposed life orientation and mode of feeding. Proc. Geol. Soc. London. 1635:160163.Google Scholar
Warne, G. F. 1977. The biology of crabs. 197 pp. Elek Science; London.Google Scholar
Williams, A. and Rowell, A. J. 1965. Morphology. Treatise Invert. Paleontol. H:57138.Google Scholar
Worcester, W. 1969. On Lingula reevi. Unpublished M.S. thesis, Univ. Hawaii. 49 pp.Google Scholar
Yatsu, N. 1902. On the habits of the Japanese Lingula. Annot. Zool. Japon. 4:6167.Google Scholar