Hostname: page-component-84b7d79bbc-g7rbq Total loading time: 0 Render date: 2024-08-04T21:18:31.976Z Has data issue: false hasContentIssue false

Can quantum leaps in body size be recognized among mammalian species?

Published online by Cambridge University Press:  08 February 2016

V. Louise Roth*
Affiliation:
Bingham Laboratory, Biology Department, Yale University, New Haven, Connecticut 06520

Abstract

Regular discontinuities in the distributions of morphological measurements may conceivably reveal tempos in evolution. Recently L⊘vtrup et al. (1974) attributed apparent stepwise interspecific variation in mammalian and avian body size to an evolutionary cause: according to these workers, the pattern may reflect punctuation in phylogeny caused by speciation. The nature and appropriate use of data, the choice of techniques for detecting patterns, and the implications of the results of such tests are discussed here in the light of this Swedish study. A technique, which may be used to verify patterns in rose diagrams or a range of ostensibly rhythmic phenomena, is described and applied to new data. Clustering is found at intervals other than those predicted by L⊘vtrup et al., but there is no consistent trend in the values of these interval lengths among data sets.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bere, R. 1970. Antelopes. 96 pp. Arco Publ. Co.; New York.Google Scholar
Berry, R. J. 1964. The evolution of an island population of the house mouse. Evolution. 18:468483.CrossRefGoogle Scholar
Bossert, W. H. 1963. Simulation of character displacement in animals. Ph.D. thesis, Harvard Univ.Google Scholar
Brink, F. H. van den 1968. A Field Guide to the Mammals of Britain and Europe. 221 pp. Houghton Mifflin Co.; Boston, Mass.Google Scholar
Brummelkamp, R. 1938a. Das sprungweise Wachstum der Kernmasse. Acta Neerlandica Morphol. 2:177187.Google Scholar
Brummelkamp, R. 1938b. Das Wachstum der Gehirnmasse mit kleinen Cephalisierungssprüngen (sog. 2-sprüngen) bei den Rodentiern. Acta Neerlandica Morphol. 2:188194.Google Scholar
Brummelkamp, R. 1938c. Das Wachstum der Gehirnmasse mit kleinen Cephalisierungssprüngen bei den Ungulaten. Acta Neerlandica Morphol. 2:260267.Google Scholar
Brummelkamp, R. 1938d. Das Wachstum der Gehirnmasse mit kleinen Cephalisierungssprüngen bei Amphibien und Fischen. Acta Neerlandica Morphol. 2:268271.Google Scholar
Burt, W. H. and Grossenheider, R. P. 1964. A Field Guide to the Mammals. 284 pp. Houghton Mifflin Co.; Boston.Google Scholar
Count, E. W. 1945. Brain and body weight in man: their antecedents in growth and evolution. Ann. N.Y. Acad. Sci. 46:9931122.CrossRefGoogle Scholar
Diamond, J. M. 1978. Niche shifts and the rediscovery of intraspecific competition. Am. Sci. 66:322331.Google Scholar
Dorst, J. and Dandelot, P. 1969. A Field Guide to the Larger Mammals of Africa. 287 pp. Houghton Mifflin Co.; Boston.Google Scholar
Dubois, E. 1897. Sur le rapport du poids de l'encéphale avec la grandeur du corps chez mammifères. Bull. Soc. Anthropol. Paris. 8:337376.Google Scholar
Dubois, E. 1924. On the brain quantity of specialized genera of mammals. Proc. R. Soc. Amsterdam. 27:430437.Google Scholar
Gazin, C. L. 1955. A review of the upper Eocene Artiodactyla of North America. Smithson. Misc. Coll. 128:196.Google Scholar
Gould, S. J. 1971. Geometric similarity in allometric growth: a contribution to the problem of scaling in the evolution of size. Am. Nat. 105:113136.CrossRefGoogle Scholar
Gould, S. J. 1974. The origin and function of “bizarre” structures: antler size and skull size in the “Irish elk,” Megaloceros giganteus. Evolution. 28:191220.Google ScholarPubMed
Gould, S. J. and Eldredge, N. 1977. Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology. 3:115151.CrossRefGoogle Scholar
Horn, H. S. and May, R. M. 1977. Limits to similarity among coexisting competitors. Nature. 270:660661.CrossRefGoogle Scholar
Hutchinson, G. E. 1959. Homage to Santa Rosalia or Why are there so many kinds of animals? Am. Nat. 93:145159.CrossRefGoogle Scholar
Hutchinson, G. E. 1968. When are species necessary? Pp. 177186. In: Lewontin, R., ed. Population Biology and Evolution. Syracuse Univ. Press; Syracuse, New York.Google Scholar
Huxley, J. S. 1932. Problems of Relative Growth. (1972 printing). 312 pp. Dover Publications, Inc.; New York.Google Scholar
Jerison, H. 1971. Quantitative analysis of the evolution of the camelid brain. Am. Nat. 105:227239.CrossRefGoogle Scholar
Løvtrup, S. 1977a. Phylogeny of Vertebrata. 330 pp. Wiley Press; London.Google Scholar
Løvtrup, S. 1977b. Derek Roff and the evolution of body size: a rejoinder. Evol. Theory. 3:155157.Google Scholar
Løvtrup, S., Rahemtulla, F., and Höglund, N.-G. 1974. Fisher's axiom and the body size of animals. Zool. Scripta. 3:5358.CrossRefGoogle Scholar
Lydekker, R. 1898. Wild Oxen, Sheep and Goats of All Lands. 318 pp. Rowland Ward Ltd.; London.CrossRefGoogle Scholar
Maiorana, V. C. 1978. An explanation of ecological and developmental constants. Nature. 273:375377.CrossRefGoogle Scholar
Marshall, L. G. and Behrensmeyer, A. K.(unpublished notes). A review of evolutionary dwarfism.Google Scholar
Meinertzhagen, R. 1938. Some weights and measurements of large mammals. Proc. Zool. Soc. London. 108:433.CrossRefGoogle Scholar
Morris, D. 1965. The Mammals. 448 pp. Harper and Row Publ. Inc.; New York.Google Scholar
Radinsky, L. 1975. Review: Evolution of the Brain and Intelligence (H. Jerison). Evolution. 29:190192.Google Scholar
Robb, R. C. 1935. A study of mutations in evolution I. Evolution in the equine skull. J. Genet. 31:3946.CrossRefGoogle Scholar
Roff, D. 1977. Does body size evolve by quantum steps? Evol. Theory. 3:155157.Google Scholar
Roth, V. L. (MS).A test for constancy in size ratios among sympatric species.Google Scholar
Sachs, R. 1967. Liveweights and body measurements of Serengeti game animals. E. Afr. Wildlife Jour. 5:2436.CrossRefGoogle Scholar
Scott, K. M. 1979. Adaptation and allometry in bovid postcranial proportions. Ph.D. thesis, Yale University.Google Scholar
Smithers, R. H. N. 1968. A Checklist and Atlas of the Mammals of Botswana. 168 pp. Variprint Ltd.; Salisbury, Rhodesia.Google Scholar
Stahl, W. R. and Gummerson, J. Y. 1967. Systematic allometry in five species of adult primates (Systematic allometry in primates). Growth. 31:2134.Google ScholarPubMed
Teissier, G. 1960. Relative growth. Pp. 537560. In: Waterman, T. H., ed. The Physiology of the Crustacea. Vol. 1. Academic Press; New York.Google Scholar
Van Valen, L. 1973. Pattern and the balance of nature. Evol. Theory. 1:3149.Google Scholar
Van Valen, L. 1975. Some aspects of mathematical ecology. Evol. Theory. 1:9196.Google Scholar
Von la Chevallerie, M. K. S. L. 1970. Meat production from wild ungulates. Proc. S. Afr. Soc. Anim. Prod. 9:7387.Google Scholar
Walker, E. P. et al. 1968. Mammals of the World. 2nd edition, 1500 pp. Johns Hopkins Press; Baltimore, Maryland.Google Scholar
Ward, R. 1928, 1962. Rowland Ward's Records of Big Game. Vol. 9, 523 pp. Vol. 11, 375 pp.Rowland Ward Ltd.; London.Google Scholar
Wigglesworth, V. B. 1972. The Principles of Insect Physiology. 7th Edition, 827 pp. Chapman and Hall; London.CrossRefGoogle Scholar