Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-08T19:24:02.510Z Has data issue: false hasContentIssue false

Diversity changes in lycopsid and aquatic fern megaspores through geologic time

Published online by Cambridge University Press:  08 February 2016

Warren L. Kovach
Affiliation:
Palynological Research Centre, Institute of Earth Studies, University of Wales, Aberystwyth, Wales SY23 3DB, United Kingdom
David J. Batten
Affiliation:
Palynological Research Centre, Institute of Earth Studies, University of Wales, Aberystwyth, Wales SY23 3DB, United Kingdom

Abstract

Quantitative data on lycopsid and aquatic fern megaspore taxa recovered from Carboniferous, Mesozoic, and Tertiary strata have been compiled in order to analyze the changes in diversity of the two groups of fossil plants that produced them. Numbers of species of lycopsid megaspores are similar in the Carboniferous and Mesozoic, whereas the diversity of megafossils is much lower in post-Paleozoic deposits. Our data suggest that lycopsids were more diverse in the Mesozoic than previously thought and that there is a preservational bias against the megafossils, because the plants were probably mainly herbaceous. Heterosporous aquatic ferns first appeared in the Neocomian and gradually diversified until the early Late Cretaceous, after which their numbers remained relatively stable, whereas the variety of lycopsids declined dramatically during the Late Cretaceous. These changes occurred at a time of rapid angiosperm diversification. The reduced diversity of the lycopsids may have been caused by the invasion of their aquatic and damp forest-floor habitats by heterosporous ferns and by aquatic and herbaceous angiosperms. These diversity changes do not seem to be directly related to the global events at the Cretaceous-Tertiary boundary, but the relatively few samples available and the resulting range truncation would make detection of such correlations difficult.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alvarez, L. W., Alvarez, W., Asaro, F., and Michel, H. V. 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science (Washington, D.C.) 208:10951108.CrossRefGoogle ScholarPubMed
Bartram, K. M. 1987. Lycopod succession in coals: an example from the Low Barnsley Seam (Westphalian B), Yorkshire, England. Pp. 187199in Scott, A. C., ed. Coal and coal-bearing strata: recent advances. Geological Society Special Publication no. 32.Google Scholar
Batten, D. J. 1984. Palynology, climate, and the development of Late Cretaceous flora provinces in the Northern Hemisphere; a review. Pp. 127163in Brenchley, P. J., ed. Fossils and climate. Special Issue of the Geological Journal 11. Wiley, Chichester.Google Scholar
Batten, D. J. 1988. Revision of S. J. Dijkstra's Late Cretaceous megaspores and other plant microfossils from Limburg, The Netherlands. Mededelingen Rijks Geologische Dienst 41–3:155.Google Scholar
Batten, D. J., and Kovach, W. L. 1990. Catalog of Mesozoic and Tertiary megaspores. American Association of Stratigraphic Palynologists, Contributions Series 24:1226.Google Scholar
Boulter, M. C., Spicer, R. A., and Thomas, B. A. 1988. Patterns of plant extinctions from some palaeobotanical evidence. Pp. 136in Larwood, G. P., ed. Extinction and survival in the fossil record. Systematics Association Special Volume 34. Oxford University Press, New York.Google Scholar
Braman, D. R., and Hills, L. V. 1980. The stratigraphic and geographic distribution of Carboniferous megaspores. Palynology 4:2341.CrossRefGoogle Scholar
Collinson, M. E. 1988. Freshwater macrophytes in palaeolimnology. Palaeogeography, Palaeoclimatology, Palaeoecology 62:317342.CrossRefGoogle Scholar
Cox, P. A., and Hickey, R. J. 1984. Convergent megaspore evolution and Isoetes. American Naturalist 124:437441.CrossRefGoogle Scholar
Crane, P. R., and Lidgard, S. 1989. Angiosperm diversification and paleolatitudinal gradients in Cretaceous floristic diversity. Science (Washington, D.C.) 246:675678.CrossRefGoogle ScholarPubMed
Dilcher, D. L. 1974. Approaches to the identification of angiosperm leaf remains. Botanical Review 40:1157.CrossRefGoogle Scholar
Dilcher, D. L. 1991. Aquatic angiosperm fossil record. American Journal of Botany 78(6):158.Google Scholar
DiMichele, W. A., and Phillips, T. L. 1985. Arborescent lycopod reproduction and paleoecology in a coal-swamp environment of late Middle Pennsylvanian age (Herrin Coal, Illinois, U.S.A.). Review of Paleobotany and Palynology 44:126.CrossRefGoogle Scholar
DiMichele, W. A., Phillips, T. L., and Peppers, R. A. 1985. The influence of climate and depositional environment on the distribution and evolution of Pennsylvanian coal swamp plants. Pp. 223255in Tiffney, B. H., ed. Influences of physical environments on vascular plant evolution. Yale University Press, New Haven, Conn.Google Scholar
DiMichele, W. A., Davis, J. I., and Olmstead, R. G. 1989. Origins of heterospory and the seed habit: the role of heterochrony. Taxon 38:111.CrossRefGoogle Scholar
Dobruskina, I. A. 1985. Some problems of the systematics of the Triassic lepidophytes. Paleontological Journal 3:7488.Google Scholar
Ellis, C. H., and Tschudy, R. H. 1964. The Cretaceous megaspore genus Arcellites Miner. Micropaleontology 10:7379.CrossRefGoogle Scholar
Gilinsky, N. L., and Bambach, R. K. 1987. Asymmetrical patterns of origination and extinction in higher taxa. Paleobiology 13:427445.CrossRefGoogle Scholar
Hall, J. W. 1974. Cretaceous Salviniaceae. Annals of the Missouri Botanical Garden 61:354367.CrossRefGoogle Scholar
Hall, J. W., and Peake, N. M. 1968. Megaspore assemblages in the Cretaceous of Minnesota. Micropaleontology 14:45464.CrossRefGoogle Scholar
Hallam, A. 1974. Jurassic environments. Cambridge University Press, Cambridge.Google Scholar
Hallam, A. 1984. Continental humid and arid zones during the Jurassic and Cretaceous. Palaeogeography, Palaeoclimatology, Palaeoecology 47:195223.CrossRefGoogle Scholar
Hallam, A. 1986. Role of climate in affecting Late Jurassic and Early Cretaceous sedimentation in the North Atlantic. Pp. 277281in Summerhayes, C. P. and Shackleton, N. J., eds. North Atlantic palaeoceanography. Special Publication of the Geological Society, London 21: 277–281.Google Scholar
Hickey, L. J. 1973. Classification of the architecture of dicotyledonous leaves. American Journal of Botany 60:1733.CrossRefGoogle Scholar
Hickey, L. J., and Doyle, J. A. 1977. Early Cretaceous fossil evidence for angiosperm evolution. Botanical Review 43:3104.CrossRefGoogle Scholar
Hickey, R. J. 1986. Isoetes megaspore surface morphology: nomenclature, variation, and systematic importance. American Fern Journal 76:116.CrossRefGoogle Scholar
Hill, R. S. 1988. Tertiary Isoetes from Tasmania. Alcheringa 12:157162.CrossRefGoogle Scholar
Keeley, J. E. 1984. Search theory and convergent spore morphology. American Naturalist 124:307308.CrossRefGoogle Scholar
Keeley, J. E. 1987. The adaptive radiation of photosynthetic modes in the genus Isoetes (Isoetaceae). Pp. 113128in Crawford, R.M.M., ed. Plant life in aquatic and amphibious habitats. Blackwell, Oxford.Google Scholar
Kemper, E., ed. 1987. Das Klima der Kreide-Ziet. Geologisches Jahrbuch Reihe A 96.Google Scholar
Knoll, A. H. 1984. Patterns of extinction in the fossil record of vascular plants. Pp. 2167in Nitecki, M., ed. Extinctions. University of Chicago Press, Chicago.Google Scholar
Knoll, A. H. 1986. Patterns of change in plant communities through geological time. Pp. 126141in Diamond, J. and Case, T. J., eds. Community ecology. Harper and Row, New York.Google Scholar
Knoll, A. H., Niklas, K. J., and Tiffney, B. H. 1979. Phanerozoic land-plant diversity in North America. Science (Washington, D.C.) 206:14001402.CrossRefGoogle ScholarPubMed
Kovach, W. L. 1989. Quantitative methods for the study of lycopod megaspore ultrastructure. Review of Palaeobotany and Palynology 57:233246.CrossRefGoogle Scholar
Kovach, W. L., and Batten, D. J. 1989. Worldwide stratigraphic occurrences of Mesozoic and Tertiary megaspores. Palynology 13:247277.CrossRefGoogle Scholar
Kovach, W. L., and Dilcher, D. L. 1988. Megaspores and other dispersed plant remains from the Dakota Formation (Cenomanian) of Kansas, USA. Palynology 12:89120.CrossRefGoogle Scholar
Krassilov, V. A., and Zahkarov, Yu. D. 1975. Pleuromeia from the Lower Triassic of the far east of the U.S.S.R. Review of Palaeobotany and Palynology 19:221232.CrossRefGoogle Scholar
Lidgard, S., and Crane, P. R. 1988. Quantitative analyses of the early angiosperm radiation. Nature (London) 331:344346.CrossRefGoogle Scholar
Lidgard, S. 1990. Angiosperm diversification and Cretaceous floristic trends: a comparison of palynofloras and leaf macrofloras. Paleobiology 16:7793.CrossRefGoogle Scholar
Lundblad, B. 1950. On a fossil Selaginella from the Rhaetic of Hyllinge, Scania. Svensk Botanisk Tidskrift 44:477487.Google Scholar
Mai, D. H. 1985. Entwicklung der Wasser- und Sumpfpflanzen-Gesellschaften Europas con der Kreide bis ins Quartär. Flora 176:449511.CrossRefGoogle Scholar
Melchior, R. C. 1977. On the occurrence of Minerisporites mirabilis in situ. Scientific Publications of the Science Museum of Minnesota 3(4):311.Google Scholar
Niklas, K. J., Tiffney, B. H., and Knoll, A. H. 1980. Apparent changes in the diversity of fossil plants: a preliminary assessment. Pp. 189in Hecht, M. K., Steere, W. C., and Wallace, B., eds. Evolutionary biology, Vol. 12. Plenum, New York.Google Scholar
Niklas, K. J. 1983. Patterns in vascular land plant diversification. Nature (London) 303:614616.CrossRefGoogle Scholar
Niklas, K. J. 1985. Patterns in vascular land plant diversification: analysis at the species level. Pp. 97128in Valentine, J. W., ed. Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press, Princeton, N.J.Google Scholar
Page, C. N. 1989. Compression and slingshot megaspore ejection in Selaginella selaginoides—a new phenomenon in pteridophytes. Fern Gazette 13:267275.Google Scholar
Pant, D. D., and Srivastava, G. K. 1965. Cytology and reproduction of some Indian species of Isoetes. Cytologia 30:239251.CrossRefGoogle Scholar
Perkins, S. K., Peters, G. A., Lumpkin, T. A., and Calvert, H. E. 1985. Scanning electron microscopy of perine architecture as a taxonomic tool in the genus Azolla Lamark. Scanning Electron Microscopy 1985(IV):17191734.Google Scholar
Pettitt, J. M. 1966. Exine structure in some fossil and recent spores and pollen as revealed by light and electron microscopy. Bulletin of the British Museum (Natural History) Geology 13:223257.CrossRefGoogle Scholar
Pettitt, J. M. 1971. Some ultrastructural aspects of sporoderm formation in pteridophytes. Pp. 227251in Erdtman, G. and Soursa, P., eds. Pollen and spore morphology/plant taxonomy: pteridophyta. Almqvist and Wiksell, Stockholm.Google Scholar
Pfeiffer, N. E. 1922. Monograph of the Isoetaceae. Annals of the Missouri Botanical Garden 9:79217.CrossRefGoogle Scholar
Phillips, T. L. 1979. Reproduction of heterosporous arborescent lycopods in the Mississippian-Pennsylvanian of Euramerica. Review of Palaeobotany and Palynology 27:239289.CrossRefGoogle Scholar
Pigg, K. B. 1992. Evolution of isoetalean lycopods. Annals of the Missouri Botanical Garden 79:589612.CrossRefGoogle Scholar
Retallack, G. 1975. The life and times of a Triassic lycopod. Alcheringa 1:329.CrossRefGoogle Scholar
R⊘rslett, B., and Brettum, P. 1989. The genus Isoetes in Scandinavia: an ecological review and perspectives. Aquatic Botany 35:223261.CrossRefGoogle Scholar
Schlanker, C. M., and Leisman, G. A. 1969. The herbaceous Carboniferous lycopod Selaginella fraiponti comb. nov. Botanical Gazette 130:3541.CrossRefGoogle Scholar
Sculthorpe, C. D. 1967. The biology of aquatic vascular plants. Edward Arnold, London.Google Scholar
Signor, P. W., and Lipps, J. H. 1982. Sampling bias, gradual extinction patterns and catastrophes in the fossil record. Geological Society of America, Special Paper 190:291296.CrossRefGoogle Scholar
Sladen, C. P., and Batten, D. J. 1984. Source-area environments of Late Jurassic and Early Cretaceous sediments in Southeast England. Proceedings of the Geologists' Association 95:149164.CrossRefGoogle Scholar
Tiffney, B. H. 1981. Diversity and major events in the evolution of land plants. Pp. 193230in Niklas, K. J., ed. Paleobotany, paleoecology, and evolution, Vol. 2. Praeger, New York.Google Scholar
Townrow, J. A. 1968. A fossil Selaginella from the Permian of New South Wales. Journal of the Linnean Society (Botany) 61:1323.CrossRefGoogle Scholar
Tryon, R. M., and Tryon, A. F. 1982. Ferns and allied plants. Springer, New York.CrossRefGoogle Scholar
Upchurch, G. R. 1989. Terrestrial environmental changes and extinction patterns at the Cretaceous-Tertiary boundary, North America. Pp. 195216in Donovan, S. K., ed. Mass extinctions: processes and evidence. Belhaven, London.Google Scholar
Vakhrameev, V. A. 1991. Jurassic and Cretaceous floras and climates of the earth. Cambridge University Press, Cambridge.Google Scholar
Watson, J. 1969. A revision of the English Wealden flora. I. Charales-Ginkgoales. Bulletin of the British Museum (Natural History) Geology 17:207254.CrossRefGoogle Scholar
Wignall, P. B., and Ruffell, A. H. 1990. The influence of a sudden climatic change on marine deposition in the Kimmeridgian of NW Europe. Journal of the Geological Society, London 147:365371.CrossRefGoogle Scholar
Wing, S. L., Sues, H.-D., Tiffney, B. H., Stucky, R. K., Weishampel, D. B., Spicer, R. A., Jablonski, D., Badgley, C. F., Wilson, M.V.H., and Kovach, W. L. 1992. Mesozoic and early Cenozoic terrestrial ecosystems. In Behrensmeyer, A. K., Damuth, J. D., DiMichele, W. A., Potts, R., Sues, H.-D., and Wing, S. L., eds. Terrestrial ecosystems through time: the evolutionary paleoecology of terrestrial plants and animals. University of Chicago Press, Chicago.Google Scholar