Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-07-30T05:22:15.713Z Has data issue: false hasContentIssue false

Macroevolution, hierarchy theory, and the C-value enigma

Published online by Cambridge University Press:  08 February 2016

T. Ryan Gregory*
Affiliation:
Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at Seventy-ninth Street, New York, New York 10024. E-mail: rgregory@genomesize.com

Abstract

For more than 60 years, evolutionary biologists have debated the issue of whether the processes of genetic change observable within populations (microevolution) can provide an adequate explanation for the large-scale patterns in the history of life (macroevolution). In general, population geneticists have argued in favor of microevolutionary extrapolation, whereas paleontologists have sought to establish an autonomous and hierarchical macroevolutionary theory based on the operation of selection at several levels of biological organization (especially species). The massive variation in eukaryotic genome sizes (haploid nuclear DNA contents, or “C-values”) has similarly been a subject of debate for more than half a century, and it has become clear that no one-dimensional explanation can account for it. In this article, the basic concepts of macroevolutionary theory are reviewed and then applied to the long-standing puzzle of genome size variation (the “C-value enigma”). Genome size evolution provides a clear example of hierarchy in action and therefore lends support to the theoretical approach of macroevolutionists. Perhaps more importantly, it is apparent that genome evolution cannot be understood without such a hierarchical approach, thereby providing an intriguing conceptual link between the most reductionistic and expansive subjects of evolutionary study.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Arkhipova, I., and Meselson, M. 2000. Transposable elements in sexual and ancient asexual taxa. Proceedings of the National Academy of Sciences USA 97:1447314477.CrossRefGoogle ScholarPubMed
Arnold, A. J., and Fristup, K. 1982. The theory of evolution by natural selection: a hierarchical expansion. Paleobiology 8:113129.CrossRefGoogle Scholar
Baum, D. A. 1998. Individuality and the existence of species through time. Systematic Biology 47:641653.CrossRefGoogle ScholarPubMed
Baumann, C., Judex, M., Huber, H., and Wirth, R. 1998. Estimation of genome sizes of hyperthermophiles. Extremophiles 2:101108.CrossRefGoogle ScholarPubMed
Bennett, M. D. 1987. Variation in genomic form in plants and its ecological implications. New Phytologist 106(Suppl.):177200.CrossRefGoogle Scholar
Bennett, M. D., and Leitch, I. J. 2001a. Nuclear DNA amounts in pteridophytes. Annals of Botany 87:335345.CrossRefGoogle Scholar
Bennett, M. D., and Leitch, I. J. 2001b. Plant DNA C-values Database. Royal Botanic Gardens, Kew, U.K.http://www.rbgkew.org.uk/cval/homepage.htmlGoogle Scholar
Bennett, M. D., Bhandol, P., and Leitch, I. J. 2000a. Nuclear DNA amounts in angiosperms and their modern uses—807 new estimates. Annals of Botany 86:859909.CrossRefGoogle Scholar
Bennett, M. D., Johnston, S., Hodnett, G. L., and Price, H. J. 2000b. Allium cepa L. cultivars from four continents compared by flow cytometry show nuclear DNA constancy. Annals of Botany 85:351357.CrossRefGoogle Scholar
Biderre, C., Pagès, M., Méténier, G., Canning, E. U., and Vivarès, C. P. 1995. Evidence for the smallest nuclear genome (2.9 Mb) in the microsporidium Encephalitozoon cuniculi. Molecular and Biochemical Parasitology 74:229231.CrossRefGoogle ScholarPubMed
Biémont, C., Vieira, C., and Borie, N. 2001. Éléments transposables et évolution du génome d'une espèce invasive: le cas de Drosophila simulans. Genetics Selection Evolution 33(Suppl. 1):S107S120.CrossRefGoogle Scholar
Britten, R. J. 1996. Cases of ancient mobile element DNA insertions that now affect gene regulation. Molecular Phylogenetics and Evolution 5:1317.CrossRefGoogle ScholarPubMed
Britten, R. J. 1997. Mobile elements inserted in the distant past have taken on important functions. Gene 205:117182.CrossRefGoogle ScholarPubMed
Brosius, J. 1999. RNAs from all categories generate retrosequences that may be exapted as novel genes or regulatory sequences. Gene 238:115134.CrossRefGoogle ScholarPubMed
Bull, J. J. 1994. Virulence. Evolution 48:14231437.Google ScholarPubMed
Burt, A., and Trivers, R. 1998. Selfish DNA and breeding system in flowering plants. Proceedings of the Royal Society of London B 265:141146.CrossRefGoogle Scholar
Burton, D. W., Bickham, J. W., and Genoways, H. H. 1989. Flow-cytometric analyses of nuclear DNA content in four families of neotropical bats. Evolution 43:756765.Google ScholarPubMed
Camacho, J. P. M., Sharbel, T. F., and Beukeboom, L. W. 2000. B-chromosome evolution. Philosophical Transactions of the Royal Society of London B 355:163178.CrossRefGoogle ScholarPubMed
Casacuberta, E., and Pardue, M.-L. 2002. Coevolution of the telomeric retrotransposons across Drosophila species. Genetics 161:11131124.CrossRefGoogle ScholarPubMed
Cavalier-Smith, T. 1978. Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. Journal of Cell Science 34:247278.CrossRefGoogle ScholarPubMed
Cavalier-Smith, T. 1982. Skeletal DNA and the evolution of genome size. Annual Review of Biophysics and Bioengineering 11:273302.CrossRefGoogle ScholarPubMed
Cavalier-Smith, T. 1985. Cell volume and the evolution of eukaryotic genome size. Pp. 104184in Cavalier-Smith, T., ed. The evolution of genome size. Wiley, Chichester, U.K.Google Scholar
Cavalier-Smith, T. 1991. Coevolution of vertebrate genome, cell, and nuclear sizes. Pp. 5186in Ghiara, G., ed. Symposium on the evolution of terrestrial vertebrates. Mucchi, Modena.Google Scholar
Charlesworth, B., and Langley, C. H. 1986. The evolution of self-regulated transposition of transposable elements. Genetics 112:359383.CrossRefGoogle ScholarPubMed
Colwell, R. K. 1981. Group selection is implicated in the evolution of female-biased sex ratios. Nature 290:401404.CrossRefGoogle Scholar
Conway Morris, S., and Harper, E. 1988. Genome size in conodonts (Chordata): inferred variations during 270 million years. Science 241:12301232.CrossRefGoogle Scholar
Darwin, C. 1871. The descent of man, and selection in relation to sex. John Murray, London.Google Scholar
Dimitri, P., and Junakovic, N. 1999. Revisiting the selfish DNA hypothesis: new evidence on accumulation of transposable elements in heterochromatin. Trends in Genetics 15:123124.CrossRefGoogle Scholar
Doolittle, W. F. 1987. What introns have to tell us: hierarchy in genome evolution. Cold Spring Harbor Symposia on Quantitative Biology 52:907913.CrossRefGoogle ScholarPubMed
Doolittle, W. F. 1989. Hierarchical approaches to genome evolution. Canadian Journal of Philosophy 14(Suppl.):101133.Google Scholar
Doolittle, W. F., Kirkwood, T. B. L., and Dempster, M. A. H. 1984. Selfish DNAs with self-restraint. Nature 307:501502.CrossRefGoogle ScholarPubMed
Duda, T. F., and Palumbi, S. R. 1999. Developmental shifts and species selection in gastropods. Proceedings of the National Academy of Sciences USA 96:1027210277.CrossRefGoogle ScholarPubMed
Eickbush, T. H. 1997. Telomerase and retrotransposons: which came first? Science 277:911912.CrossRefGoogle ScholarPubMed
Eickbush, T. H. 2002. Repair by retrotransposition. Nature Genetics 31:126127.CrossRefGoogle ScholarPubMed
Eldredge, N. 1971. The allopatric model and phylogeny in Paleozoic invertebrates. Evolution 25:156167.CrossRefGoogle ScholarPubMed
Eldredge, N. 1985. Unfinished synthesis. Oxford University Press, Oxford.Google Scholar
Eldredge, N. 1995. Reinventing Darwin. Wiley, New York.Google Scholar
Eldredge, N. 1998. The pattern of evolution. W. H. Freeman, New York.Google Scholar
Eldredge, N., and Gould, S. J. 1972. Punctuated equilibria: an alternative to phyletic gradualism. Pp. 82115in Schopf, T. J. M., ed. Models in paleobiology. Freeman Cooper, San Francisco.Google Scholar
Eldredge, N., and Salthe, S. N. 1984. Hierarchy and evolution. Oxford Surveys in Evolutionary Biology 1:184208.Google Scholar
Esnault, C., Maestre, J., and Heidmann, T. 2000. Human LINE retrotransposons generate processed pseudogenes. Nature Genetics 24:363367.CrossRefGoogle ScholarPubMed
Feschotte, C., Jiang, N., and Wessler, S. R. 2002. Plant transposable elements: where genetics meets genomics. Nature Reviews Genetics 3:329341.CrossRefGoogle ScholarPubMed
Finnegan, D. J. 1989. Eukaryotic transposable elements and genome evolution. Trends in Genetics 5:103107.CrossRefGoogle ScholarPubMed
Finston, T. L., Hebert, P. D. N., and Foottit, R. B. 1995. Genome size variation in aphids. Insect Biochemistry and Molecular Biology 25:189196.CrossRefGoogle Scholar
Fisher, R. A. 1958. The genetical theory of natural selection, 2d ed.Dover, New York.Google Scholar
Flemming, A. J., Shen, Z.-Z., Cunha, A., Emmons, S. W., and Leroi, A. M. 2000. Somatic polyploidization and cellular proliferation drive body size evolution in nematodes. Proceedings of the National Academy of Sciences USA 97:52855290.CrossRefGoogle ScholarPubMed
Frank, S. A. 1986. Hierarchical selection theory and sex ratios. I. General solutions for structured populations. Theoretical Population Biology 29:312342.CrossRefGoogle ScholarPubMed
Frank, S. A. 1996. Models of parasite virulence. Quarterly Review of Biology 71:339344.CrossRefGoogle ScholarPubMed
Futuyma, D. J. 1998. Evolutionary biology, 3d ed. Sinauer, Sunderland, Mass.Google Scholar
Ghiselin, M. T. 1974. A radical solution to the species problem. Systematic Zoology 23:536544.CrossRefGoogle Scholar
Gilinsky, N. L. 1986. Species selection as a causal process. Evolutionary Biology 20:249273.Google Scholar
Gold, J. R., and Amemiya, C. T. 1987. Genome size variation in North American minnows (Cyprinidae). II. Variation among 20 species. Genome 29:481489.CrossRefGoogle ScholarPubMed
Goodnight, C. J., and Stevens, L. 1997. Experimental studies of group selection: what do they tell us about group selection in nature? American Naturalist 150(Suppl.):S59S79.CrossRefGoogle ScholarPubMed
Gould, S. J. 1982. The meaning of punctuated equilibrium and its role in validating a hierarchical approach to macroevolution. Pp. 83104in Milkman, R., ed. Perspectives on evolution. Sinauer, Sunderland, Mass.Google Scholar
Gould, S. J. 1983. Hen's teeth and horse's toes. Norton, New York.Google Scholar
Gould, S. J. 1992. Punctuated equilibrium in fact and theory. Pp. 5484in Somit, A. and Peterson, S. A., eds. The dynamics of evolution. Cornell University Press, Ithaca, NY.Google Scholar
Gould, S. J. 1995. The Darwinian body. Neues Jarbuch für Geologie und Paläontologie Abhandlungen 195:267278.CrossRefGoogle Scholar
Gould, S. J. 1998. Gulliver's further travels: the necessity and difficulty of a hierarchical theory of selection. Philosophical Transactions of the Royal Society of London B 353:307314.CrossRefGoogle ScholarPubMed
Gould, S. J. 2000. The lying stones of Marrakech. Harmony Books, New York.CrossRefGoogle Scholar
Gould, S. J. 2002. The structure of evolutionary theory. Harvard University Press, Cambridge.Google Scholar
Gould, S. J., and Lloyd, E. A. 1999. Individuality and adaptation across levels of selection: how shall we name and generalize the unit of Darwinism. Proceedings of the National Academy of Sciences USA 96:1190411909.CrossRefGoogle Scholar
Grantham, T. A. 1995. Hierarchical approaches to macroevolution: recent work on species selection and the “effect hypothesis.” Annual Review of Ecology and Systematics 26:301321.CrossRefGoogle Scholar
Gray, Y. H. M. 2000. It takes two transposons to tango: transposable-element-mediated chromosomal rearrangements. Trends in Genetics 16:461468.CrossRefGoogle ScholarPubMed
Gregory, T. R. 2000. Nucleotypic effects without nuclei: genome size and erythrocyte size in mammals. Genome 43:895901.CrossRefGoogle ScholarPubMed
Gregory, T. R. 2001a. Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biological Reviews 76:65101.Google ScholarPubMed
Gregory, T. R. 2001b. The bigger the C-value, the larger the cell: genome size and red blood cell size in vertebrates. Blood Cells, Molecules, and Diseases 27:830843.CrossRefGoogle ScholarPubMed
Gregory, T. R. 2001c. Animal genome size database. http://www.genomesize.comGoogle Scholar
Gregory, T. R. 2002a. A bird's-eye view of the C-value enigma: genome size, cell size, and metabolic rate in the class Aves. Evolution 56:121130.Google ScholarPubMed
Gregory, T. R. 2002b. Genome size and developmental parameters in the homeothermic vertebrates. Genome 45:833838.CrossRefGoogle ScholarPubMed
Gregory, T. R. 2002c. Genome size and developmental complexity. Genetica 115:131146.CrossRefGoogle ScholarPubMed
Gregory, T. R. 2003. Variation across amphibian species in the size of the nuclear genome supports a pluralistic, hierarchical approach to the C-value enigma. Biological Journal of the Society 78:329339.Google Scholar
Gregory, T. R., and Hebert, P. D. N. 1999. The modulation of DNA content: proximate causes and ultimate consequences. Genome Research 9:317324.CrossRefGoogle ScholarPubMed
Gregory, T. R., Hebert, P. D. N., and Kolasa, J. 2000. Evolutionary implications of the relationship between genome size and body size in flatworms and copepods. Heredity 84:201208.CrossRefGoogle ScholarPubMed
Greilhuber, J. 1998. Intraspecific variation in genome size: a critical reassessment. Annals of Botany 82(Suppl. A):2735.CrossRefGoogle Scholar
Hamilton, W. D. 1964. The genetical evolution of social behaviour, I and II. Journal of Theoretical Biology 7:152.CrossRefGoogle Scholar
Hamilton, W. D. 1975. Innate social aptitudes of Man: an approach from evolutionary genetics. Pp. 133155in Fox, R., ed. Biosocial anthropology. Wiley, New York.Google Scholar
Hansen, T. A. 1980. Influence of larval dispersal and geographic distribution on species longevity in neogastropods. Paleobiology 6:193207.CrossRefGoogle Scholar
Hardie, D. C., Gregory, T. R., and Hebert, P. D. N. 2002. From pixels to picograms: a beginners' guide to genome quantification by Feulgen image analysis densitometry. Journal of Histochemistry and Cytochemistry 50:735749.CrossRefGoogle ScholarPubMed
Hawkey, C. M., Bennett, P. M., Gascoyne, S. C., Hart, M. G., and Kirkwood, J. K. 1991. Erythrocyte size, number and haemoglobin content in vertebrates. British Journal of Haematology 77:392397.CrossRefGoogle ScholarPubMed
Heddi, A., Charles, H., and Khatchadourian, C. 2001. Intracellular bacterial symbiosis in the genus Sitophilus: the ‘biological individual’ concept revisited. Research in Microbiology 152:431437.CrossRefGoogle ScholarPubMed
Hughes, A. L. 1999. Adaptive evolution of genes and genomes. Oxford University Press, Oxford.Google Scholar
Hull, D. L. 1976. Are species really individuals? Systematic Zoology 25:174191.CrossRefGoogle Scholar
Hull, D. L. 1980. Individuality and selection. Annual Review of Ecology and Systematics 11:311332.CrossRefGoogle Scholar
Hurst, G. D. D., and Werren, J. H. 2001. The role of selfish genetic elements in eukaryotic evolution. Nature Reviews Genetics 2:597606.CrossRefGoogle ScholarPubMed
Hutchison, C. A., Peterson, S. N., Gill, S. R., Cline, R. T., White, O., Fraser, C. M., Smith, H. O., and Venter, J. C. 1999. Global transposon mutagenesis and a minimal Mycoplasma genome. Science 286:21652169.CrossRefGoogle Scholar
International Human Genome Sequencing Consortium. 2001. Initial sequencing and analysis of the human genome. Nature 409:860921.CrossRefGoogle Scholar
Jablonski, D. 1987. Heritability at the species level: analysis of geographic ranges of Cretaceous mollusks. Science 238:360363.CrossRefGoogle ScholarPubMed
Jablonski, D., and Lutz, R. A. 1983. Larval ecology of marine benthic invertebrates: paleobiological implications. Biological Reviews 58:2189.CrossRefGoogle Scholar
Kidwell, M. G. 2002. Tranposable elements and the evolution of genome size in eukaryotes. Genetica 115:4963.CrossRefGoogle Scholar
Kidwell, M. G., and Lisch, D. 1997. Transposable elements as sources of variation in animals and plants. Proceedings of the National Academy of Sciences USA 94:77047711.CrossRefGoogle ScholarPubMed
Kidwell, M. G., and Lisch, D. 2000. Transposable elements and host genome evolution. Trends in Ecology and Evolution 15:9599.CrossRefGoogle ScholarPubMed
Kidwell, M. G., and Lisch, D. 2001. Transposable elements, parasitic DNA, and genome evolution. Evolution 55:124.Google ScholarPubMed
Kidwell, M. G., and Lisch, D. 2002. Transposable elements as sources of genomic variation. Pp. 5990in Craig, N. L., Craigie, R., Gellert, M., and Lambowitz, A. M., eds. Mobile DNA II. ASM Press, Washington, D.C.Google Scholar
Labrador, M., and Corces, V. G. 1997. Transposable element-host interactions: regulation of insertion and excision. Annual Review of Genetics 31:381404.CrossRefGoogle ScholarPubMed
Labuda, D., Zietkiewicz, E., and Mitchell, G. A. 1995. Alu elements as a source of genomic variation: deleterious effects and evolutionary novelties. Pp. 124in Maraia, 1995.Google Scholar
Lack, D. 1966. Population studies of birds. Oxford University Press, Oxford.Google Scholar
Leitch, I. J., Hanson, L., Winfield, M., Parker, J., and Bennett, M. D. 2001. Nuclear DNA C-values complete familial representation in gymnosperms. Annals of Botany 88:843849.CrossRefGoogle Scholar
Levis, R. W., Ganesan, R., Houtchens, K., Tolar, L. A., and Sheen, F. M. 1993. Transposons in place of telomeric repeats at a Drosophila telomere. Cell 75:10831093.CrossRefGoogle Scholar
Lewontin, R. C. 1970. The units of selection. Annual Review of Ecology and Systematics 1:118.CrossRefGoogle Scholar
Lewontin, R. C. 2000. The triple helix. Harvard University Press, Cambridge.Google Scholar
Li, W.-H. 1997. Molecular evolution. Sinauer, Sunderland, Mass.Google ScholarPubMed
Licht, L. E., and Lowcock, L. A. 1991. Genome size and metabolic rate in salamanders. Comparative Biochemistry and Physiology 100B:8392.Google Scholar
Lieberman, B. S. 1992. An extension of the SMRS concept into a phylogenetic context. Evolutionary Theory 10:157161.Google Scholar
Lieberman, B. S., and Vrba, E. S. 1995. Hierarchy theory, selection, and sorting. BioScience 45:394399.CrossRefGoogle Scholar
Lieberman, B. S., Allmon, W. D., and Eldredge, N. 1993. Levels of selection and macroevolutionary patterns in the turritellid gastropods. Paleobiology 19:205215.CrossRefGoogle Scholar
Lloyd, E. A., and Gould, S. J. 1993. Species selection on variability. Proceedings of the National Academy of Sciences USA 90:595599.CrossRefGoogle ScholarPubMed
Prak, E. T. L. Luning, and Kazazian, H. H. 2000. Mobile elements and the human genome. Nature Reviews Genetics 1:134144.CrossRefGoogle ScholarPubMed
Makalowski, W. 1995. SINEs as a genomic scrap yard: an essay on genomic evolution. Pp. 81104in Maraia, 1995.Google Scholar
Malik, H. S., Burke, W. D., and Eickbush, T. H. 1999. The age and evolution of non-LTR retrotransposable elements. Molecular Biology and Evolution 16:793805.CrossRefGoogle ScholarPubMed
Maraia, R. J., ed. 1995. The impact of short interspersed elements (SINEs) on the host genome. Springer, New York.Google Scholar
Smith, J. Maynard 2002. The major transitions in evolution. Pp. E17E22in Pagel, M., ed. Encyclopedia of evolution, Vol. 1. Oxford University Press, Oxford.Google Scholar
Smith, J. Maynard, and Szathmáry, E. 1993. The origin of chromosomes. I. Selection for linkage. Journal of Theoretical Biology 164:437466.CrossRefGoogle ScholarPubMed
Smith, J. Maynard, and Szathmáry, E. 1995. The major transitions in evolution. Oxford University Press, Oxford.Google Scholar
Mayr, E. 1954. Change of genetic environment and evolution. Pp. 157180in Huxley, J. S., Hardy, A. C., and Ford, E. B., eds. Evolution as a process. Allen and Unwin, London.Google Scholar
Mayr, E. 1963. Animal species and evolution. Harvard University Press, Cambridge.CrossRefGoogle Scholar
Mayr, E. 1992. Speciational evolution or punctuated equilibria. Pp. 2153in Somit, A. and Peterson, S. A., eds. The dynamics of evolution. Cornell University Press, Ithaca, NY.Google Scholar
McDonald, J. F. 1990. Macroevolution and retroviral elements. BioScience 40:183191.CrossRefGoogle Scholar
McDonald, J. F. 1995. Transposable elements: possible catalysts of organismic evolution. Trends in Ecology and Evolution 10:123126.CrossRefGoogle ScholarPubMed
McShea, D. W. 2002. A complexity drain on cells in the evolution of multicellularity. Evolution 56:441452.Google ScholarPubMed
Michod, R. E. 1997. Evolution of the individual. American Naturalist 150(Suppl.):S5S21.CrossRefGoogle ScholarPubMed
Michod, R. E., and Roze, D. 2000. Cooperation and conflict in the evolution of multicellularity. Heredity 86:17.CrossRefGoogle Scholar
Mirsky, A. E., and Ris, H. 1951. The desoxyribonucleic acid content of animal cells and its evolutionary significance. Journal of General Physiology 34:451462.CrossRefGoogle ScholarPubMed
Mishler, B. D., and Brandon, R. N. 1987. Individuality, pluralism, and the phylogenetic species concept. Biology and Philosophy 2:397414.CrossRefGoogle Scholar
Morrish, T. A., Gilbert, N., Myers, J. S., Vincent, B. J., Stamato, T. D., Taccioli, G. E., Batzer, M. A., and Moran, J. V. 2002. DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. Nature Genetics 31:159165.CrossRefGoogle ScholarPubMed
Narayan, R. K. J. 1998. The role of genomic constraints upon evolutionary changes in genome size and chromosome organization. Annals of Botany 82(Suppl. A):5766.CrossRefGoogle Scholar
Orgel, L. E., and Crick, F. H. C. 1980. Selfish DNA: the ultimate parasite. Nature 284:604607.CrossRefGoogle ScholarPubMed
Östergren, G. 1945. Parasitic nature of extra fragment chromosomes. Botaniska Notiser 2:157163.Google Scholar
Pardue, M. L., Danilevskaya, O. N., Traverse, K. L., and Lowenhaupt, K. 1997. Evolutionary links between telomeres and transposable elements. Genetica 100:7384.CrossRefGoogle ScholarPubMed
Paterson, H. E. H. 1985. The recognition concept of species. Transvaal Museum Monographs 4:2129.Google Scholar
Raff, R. A., and Kaufman, T. C. 1983. Embryos, genes, and evolution. Macmillan, New York.Google Scholar
Renzaglia, K. S., Rasch, E. M., and Pike, L. M. 1995. Estimates of nuclear DNA content in bryophyte sperm cells: phylogenetic considerations. American Journal of Botany 82:1825.CrossRefGoogle Scholar
Ridley, M. 1993. Evolution. Blackwell Science, Boston.Google Scholar
Roth, G., Blanke, J., and Wake, D. B. 1994. Cell size predicts morphological complexity in the brains of frogs and salamanders. Proceedings of the National Academy of Sciences USA 91:47964800.CrossRefGoogle ScholarPubMed
Roth, G., Nishikawa, K. C., and Wake, D. B. 1997. Genome size, secondary simplification, and the evolution of the brain in salamanders. Brain, Behavior and Evolution 50:5059.CrossRefGoogle ScholarPubMed
SanMiguel, P., and Bennetzen, J. L. 1998. Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Annals of Botany 82(Suppl. A):3744.CrossRefGoogle Scholar
Santelices, B. 1999. How many kinds of individual are there? Trends in Ecology and Evolution 14:152155.CrossRefGoogle Scholar
Sapienza, C., and Doolittle, W. F. 1981. Genes are things you have whether you want them or not. Cold Spring Harbor Symposia on Quantitative Biology 45:177182.CrossRefGoogle ScholarPubMed
Schmid, C. W., and Rubin, C. M. 1995. Alu: what's the use? Pp. 105123in Maraia, 1995.Google Scholar
Schön, I., and Martens, K. 2000. Transposable elements and asexual reproduction. Trends in Ecology and Evolution 15:287288.CrossRefGoogle ScholarPubMed
Seaborg, D. M. 1999. Evolutionary feedback: a new mechanism for stasis and punctuated evolutionary change based on integration of the organism. Journal of Theoretical Biology 198:126.CrossRefGoogle ScholarPubMed
Seeley, T. D. 1997. Honey bee colonies are group-level adaptive units. American Naturalist 150(Suppl.):S22S41.CrossRefGoogle ScholarPubMed
Selosse, M.-A., Albert, B., and Godelle, B. 2001. Reducing the genome size of organelles favours gene transfer to the nucleus. Trends in Ecology and Evolution 16:135141.CrossRefGoogle ScholarPubMed
Smit, A. F. A. 1999. Interspersed repeats and other momentos of transposable elements in mammalian genomes. Current Opinion in Genetics and Development 9:657663.CrossRefGoogle Scholar
Sober, E., and Wilson, D. S. 1998. Unto others. Harvard University Press, Cambridge.Google Scholar
Stanley, S. M. 1975. A theory of evolution above the species level. Proceedings of the National Academy of Sciences USA 72:646650.CrossRefGoogle ScholarPubMed
Stanley, S. M. 1979. Macroevolution: pattern and process. W. H. Freeman, San Francisco.Google Scholar
Swift, H. 1950. The constancy of desoxyribose nucleic acid in plant nuclei. Proceedings of the National Academy of Science USA 36:643654.CrossRefGoogle ScholarPubMed
Szarski, H. 1976. Cell size and nuclear DNA content in vertebrates. International Review of Cytology 44:93111.CrossRefGoogle ScholarPubMed
Szarski, H. 1983. Cell size and the concept of wasteful and frugal evolutionary strategies. Journal of Theoretical Biology 105:201209.CrossRefGoogle ScholarPubMed
Thomas, C. A. 1971. The genetic organization of chromosomes. Annual Review of Genetics 5:237256.CrossRefGoogle ScholarPubMed
Thomson, K. S. 1972. An attempt to reconstruct evolutionary changes in the cellular DNA content of lungfish. Journal of Experimental Zoology 180:363372.CrossRefGoogle Scholar
Thomson, K. S., and Muraszko, K. 1978. Estimation of cell size and DNA content in fossil fishes and amphibians. Journal of Experimental Zoology 205:315320.CrossRefGoogle Scholar
Trivers, R. 1971. The evolution of reciprocal altruism. Quarterly Review of Biology 46:3557.CrossRefGoogle Scholar
Vendrely, R., and Vendrely, C. 1948. La teneur du noyau cellulaire en acide désoxyribonucléique à travers les organes, les individus et les espèces animales: techniques et premiers résultats. Experientia 4:434436.CrossRefGoogle Scholar
Vieira, C., Nardon, C., Arpin, C., Lepetit, D., and Biémont, C. 2002. Evolution of genome size in Drosophila: is the invader's genome being invaded by transposable elements? Molecular Biology and Evolution 19:11541161.CrossRefGoogle ScholarPubMed
Villolobos, M., León, P., Sessions, S. K., and Kezer, J. 1988. Enucleated erythrocytes in plethodontid salamanders. Herpetologica 44:243250.Google Scholar
Vinogradov, A. E. 1995. Nucleotypic effect in homeotherms: body mass-corrected basal metabolic rate of mammals is related to genome size. Evolution 49:12491259.CrossRefGoogle ScholarPubMed
Voglmayr, H. 2000. Nuclear DNA amounts in mosses (Musci). Annals of Botany 85:531546.CrossRefGoogle Scholar
Vrba, E. S. 1980. Evolution, species and fossils: how does life evolve? South African Journal of Science 76:6184.Google Scholar
Vrba, E. S. 1983. Macroevolutionary trends: new perspectives on the roles of adaptation and incidental effect. Science 221:387389.CrossRefGoogle ScholarPubMed
Vrba, E. S. 1984. What is species selection? Systematic Zoology 33:318328.CrossRefGoogle Scholar
Vrba, E. S. 1989. Levels of selection and sorting with special reference to the species level. Oxford Surveys in Evolutionary Biology 6:111168.Google Scholar
Vrba, E. S., and Eldredge, N. 1984. Individuals, hierarchies and processes: towards a more complete evolutionary theory. Paleobiology 10:146171.CrossRefGoogle Scholar
Vrba, E. S., and Gould, S. J. 1986. The hierarchical expansion of sorting and selection: sorting and selection cannot be equated. Paleobiology 12:217228.CrossRefGoogle Scholar
Wake, D. B., Roth, G., and Wake, M. H. 1983. On the problem of stasis in organismal evolution. Journal of Theoretical Biology 101:211224.CrossRefGoogle Scholar
Waltari, E., and Edwards, S. V. 2002. Evolutionary dynamics of intron size, genome size, and physiological correlates in archosaurs. American Naturalist 160:539552.CrossRefGoogle ScholarPubMed
Watanabe, K., Yahara, T., Denda, T., and Kosuge, K. 1999. Chromosomal evolution in the genus Brachyscome (Asteraceae, Astereae): statistical tests regarding correlation between changes in karyotype and habit using phylogenetic information. Journal of Plant Research 112:145161.CrossRefGoogle Scholar
Watson, J. D., and Crick, F. H. C. 1953. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171:737738.CrossRefGoogle ScholarPubMed
Weinberg, S. 2001. Can science explain everything? Anything? New York Review of Books, May 31.Google Scholar
Williams, G. C. 1966. Adaptation and natural selection. Princeton University Press, Princeton, N.J.Google Scholar
Williams, G. C. 1992. Natural selection: domains, levels, and challenges. Oxford University Press, New York.CrossRefGoogle Scholar
Wilson, D. S. 2000. Nonzero and nonsense: group selection, non-zerosumness, and the human Gaia hypothesis. Skeptic 8:8489.Google Scholar
Wilson, D. S., and Colwell, R. K. 1981. Evolution of sex ratio in structured demes. Evolution 35:882897.CrossRefGoogle ScholarPubMed
Wilson, D. S., and Sober, E. 1994. Re-introducing group selection to the human behavioral sciences. Behavioral and Brain Sciences 17:585654.CrossRefGoogle Scholar
Wright, S. I., and Schoen, D. J. 1999. Transposon dynamics and the breeding system. Genetica 107:139148.CrossRefGoogle ScholarPubMed
Wynne-Edwards, V. C. 1962. Animal dispersion in relation to social behavior. Oliver and Boyd, Edinburgh.Google Scholar
Zeyl, C., and Bell, G. 1996. Symbiotic DNA in eukaryotic genomes. Trends in Ecology in Evolution 11:1015.CrossRefGoogle ScholarPubMed