Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-12T21:24:08.826Z Has data issue: false hasContentIssue false

Paleobotany: Perspectives in 19801

Published online by Cambridge University Press:  08 February 2016

Andrew H. Knoll
Affiliation:
Department of Geology, Oberlin College, Oberlin, Ohio 44074
Gar W. Rothwell
Affiliation:
Department of Botany, Ohio University, Athens, Ohio 45701

Abstract

In the past twenty years, both knowledge of fossil plants and ways of looking at the paleobotanical record have expanded significantly. Studies of Precambrian microfossils have provided insight on early photoautotrophs, while fundamental changes in perceptions of Silurian and Devonian plant remains have clarified our understanding of the colonization of land, as well as the subsequent evolution of complex stems, leaves, and the seed habit. A recurring question concerns the phylogenetic relationships of gymnosperms: is the gymnospermy found in various living and extinct taxa the result of evolutionary convergence or of common descent? Rapidly accumulating data on the reproductive and developmental biology of Paleozoic seed ferns is reopening debate on this issue. The mystery of angiosperm origins remains “abominable”, but the past two decades of research have seen convincing documentation of the initial radiation and rise to taxonomic and ecological dominance of the flowering plants.

While phylogenetic and systematic botany remain at the core of paleobotanical research, increased attention is being devoted to studies of ontogeny and reproductive biology, paleoecology, taphonomy, paleophytochemistry, paleoclimatology, and paleobiogeography. Studies of evolutionary rates and diversity are in their infancy, but initial results permit an optimistic appraisal of the contributions that paleobotanists can make to evolutionary paleontology.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alvarez, L. W., Alvarez, W., Asaro, F., and Michel, H. V. 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208: 10951108.CrossRefGoogle ScholarPubMed
Andrews, H. N. 1961. Studies in Paleobotany. Wiley: New York.Google Scholar
Andrews, H. N. 1963. Early seed plants. Science. 142: 925931.CrossRefGoogle ScholarPubMed
Andrews, H. N., Gensel, P. G. and Kasper, A. E. 1976. A new fossil plant of probable intermediate affinities (Trimerophyte-Progymnosperm). Can. J. Bot. 53: 17191728.CrossRefGoogle Scholar
Awramik, S. M., Schopf, J. W., Walter, M. R., and Dunlop, J. S. R. 1981. Archean microfossils from the 3400–3500 Myr old Warrawoona Group, Western Australia. Science. in press.Google Scholar
Axelrod, D. E. and Bailey, H. B. 1969. Paleotemperature analysis of Tertiary floras. Palaeogeogr., Palaeoclimat., Palaeoecol. 6: 163195.CrossRefGoogle Scholar
Bailey, I. W. and Sinnott, E. W. 1915. A botanical index of Cretaceous and Tertiary climates. Science. 41: 831834.CrossRefGoogle ScholarPubMed
Balbach, M. K. 1962. Observations on the ontogeny of Lepidocarpon. Am. J. Bot. 49: 984989.CrossRefGoogle Scholar
Banks, H. P. 1968. The early history of land plants. pp. 73107. In: Drake, E., ed. Evolution and Environment: a Symposium Presented on the One Hundredth Anniversary of the Foundation of Peabody Museum of Natural History at Yale University. Yale Univ. Press; New Haven.Google Scholar
Banks, H. P. 1975a. Early vascular land plants: proof and conjecture. BioScience. 25: 730737.CrossRefGoogle Scholar
Banks, H. P. 1975b. The oldest vascular plants: a note of caution. Rev. Palaeobot. Palynol. 20: 1325.CrossRefGoogle Scholar
Banks, H. P. 1975c. Palaeogeographic implications of some Silurian-Early Devonian floras. pp. 7597. In: Campbell, K. S. W., ed. Gondwana Geology. Aust. Nat. Univ. Press; Canberra.Google Scholar
Banks, H. P. 1975d. Reclassification of Psilophyta. Taxon. 24: 401413.CrossRefGoogle Scholar
Banks, H. P. 1979. The role of Psilophyton in the evolution of vascular plants. Rev. Palaeobot. Palynol. 29: 165176.CrossRefGoogle Scholar
Barghoorn, E. S. 1952. Degradation of plant materials and its relation to the origin of coal. Second Conference on the Origin and Constitution of Coal, Crystal Cliffs, Nova Scotia. pp. 181203. Nova Scotia Research Foundation.Google Scholar
Barghoorn, E. S. and Tyler, S. A. 1965. Microorganisms from the Gunflint chert. Science. 147: 563577.CrossRefGoogle ScholarPubMed
Barnard, P. D. W. 1973. Mesozoic floras. Spec. Pap. Palaeontol. 12: 175187.Google Scholar
Bateson, G. 1979. Mind and Nature. E. P. Dutton; New York.Google Scholar
Beck, C. B. 1960a. Connection between Archaeopteris and Callixylon. Science. 131: 15241525.CrossRefGoogle ScholarPubMed
Beck, C. B. 1960b. The identity of Archaeopteris and Callixylon. Brittonia. 12: 351368.CrossRefGoogle Scholar
Beck, C. B. 1970. The appearance of gymnospermous structure. Biol. Rev. Cambridge Philos. Soc. 45: 379400.CrossRefGoogle Scholar
Beck, C. B. 1975. Current status of the Progymnospermopsida. Rev. Palaeobot. Palynol. 21: 523.CrossRefGoogle Scholar
Behrensmeyer, A. K. and Hill, A. P., eds. 1980. Fossils in the Making: vertebrate Taphonomy and Paleoecology. Univ. Chicago Press, Chicago.Google Scholar
Bernard, J. C. and Webb, T. 1977. Changing patterns in the Holocene pollen record of northeastern North America: a mapped summary. Quat. Res. 8: 6496.Google Scholar
Berry, E. W. 1924. The Middle and Upper Eocene floras of southeastern North America. U.S. Geol. Surv. Prof. Pap. 92: 1206.Google Scholar
Bierhorst, D. W. 1971. Morphology of Vascular Plants. Macmillan; New York.Google Scholar
Bloeser, B., Schopf, J. W., Horodyski, R. J., and Breed, W. J. 1977. Chitinozoans from the late Precambrian Chuar Group of the Grand Canyon, Arizona. Science. 195: 676679.CrossRefGoogle ScholarPubMed
Brack-Hanes, S. D. 1978. On the megagametophytes of two lepidodendracean cones. Bot. Gaz. 139: 140146.CrossRefGoogle Scholar
Brack-Hanes, S. D. and Vaughn, J. C. 1978. Evidence of Paleozoic chromosomes from lycopod microgametophytes. Science. 200: 13831385.CrossRefGoogle ScholarPubMed
Brenner, G. J. 1976. Middle Cretaceous floral provinces and early migrations of angiosperms. pp. 2347. In: Beck, C. B., ed. Origin and Early Evolution of Angiosperms. Columbia; New York.Google Scholar
Brown, R. W. 1956. Palmlike plants from the Dolores formation (Triassic) in southwestern Colorado. U.S. Geol. Surv. Prof. Pap. 274H: 205209, pls. 32–33.Google Scholar
Brush, G. F. and Brush, L. M. 1972. Transport of pollen in a stream laden channel: a laboratory study. Am. J. Sci. 272: 359381.CrossRefGoogle Scholar
Chaloner, W. G. 1970. The rise of the first land plants. Biol. Rev. Cambridge Philos. Soc. 45: 353377.CrossRefGoogle Scholar
Chaloner, W. G. and Allen, K. 1970. Palaeobotany and phytochemical phylogeny. pp. 2130. In: Harbonne, J. B., ed. Phytochemical Phylogeny. Academic Press; New York.Google Scholar
Chaloner, W. G. and Lacey, W. S. 1973. The distribution of late Palaeozoic floras. Spec. Pap. Palaeontol. 12: 271289.Google Scholar
Chaloner, W. G. and Meyen, S. V. 1973. Carboniferous and Permian floras of the northern continents. pp. 169186. In: Hallam, A., ed. Atlas of Palaeobiogeography. Elsevier; Amsterdam.Google Scholar
Chaloner, W. G. and Sheerin, A. 1979. Devonian macrofloras. Spec. Pap. Palaeontol. 23: 145161.Google Scholar
Chaney, R. W. 1924. Quantitative studies of the Bridge Creek flora. Am. J. Sci. 8: 127144.CrossRefGoogle Scholar
Cloud, P. E. 1976. Beginnings of biospheric evolution and their biogeochemical consequences. Paleobiology. 2: 351387.CrossRefGoogle Scholar
Cohen, A. D. and Spackman, W. 1972. Methods in peat petrology and applications to reconstructions of environments. Geol. Soc. Am. Bull. 83: 129142.CrossRefGoogle Scholar
Cohen, A. D. and Spackman, W. 1977. Phytogenic organic sediments and sedimentary environments in the Everglades-mangrove complex. Part II. The origin, description and classification of the peats in southern Florida. Palaeontographica Abt. B. 162: 71114.Google Scholar
Cohen, A. D. and Spackman, W. 1980. Phytogenic organic sediments and sedimentary environments in the Everglades-mangrove complex of Florida. Part III. The alteration of plant material in peats and the origin of coal macerals. Palaeontographica Abt. B. 172: 125149.Google Scholar
Cousminer, H. L. 1961. Palynology, paleofloras, and paleoenvironments. Micropaleontology. 1: 365368.CrossRefGoogle Scholar
Crepet, W. L. 1974. Investigations of North American Cycadeoids: the reproductive biology of Cycadeoidea. Palaeontographica. 148B: 144169.Google Scholar
Crepet, W. L. 1979a. Some aspects of the pollination biology of Middle Eocene angiosperms. Rev. Palaeobot. Palynol. 27: 213238.CrossRefGoogle Scholar
Crepet, W. L. 1979b. Insect pollination: a paleontological perspective. BioScience. 29: 102108.CrossRefGoogle Scholar
Crepet, W. L. and Delevoryas, T. 1972. Investigations of North American cycadeoids: early ovule ontogeny. Am. J. Bot. 59: 209215.CrossRefGoogle Scholar
Crowder, A. and Starling, R. N. 1980. Contemporary pollen in the Salmon River basin, Ontario. Rev. Palaeobot. Palynol. 30: 1126.CrossRefGoogle Scholar
Davies, D. 1920. Distribution of the different species of flora and fauna from the Westphalian and part of the Staffordian Series of Clydach Vale and Gilfach Goch, East Glamorgenshire. Trans. Inst. Min. Eng. 59: 183221.Google Scholar
Davies, D. 1921. Ecology of the Westphalian and lower part of the Staffordian Series of Clydach Vale and Gilfach Goch. Q. J. Geol. Soc. London. 77: 3074.CrossRefGoogle Scholar
Davies, D. 1929. Correlation and paleontology of the Coal Measures in East Glamorganshire. Phil. Trans. R. Soc. London. 217B: 91154.Google Scholar
Davis, R. B. and Webb, T. 1975. The contemporary distribution of pollen in eastern North America: a comparison with the vegetation. Quat. Res. 5: 395434.CrossRefGoogle Scholar
Davis, P. H. and Heywood, V. H. 1966. Principals of Angiosperm Taxonomy. 556 pp. Oliver and Boyd; Edinburgh.Google Scholar
Delevoryas, T. 1955. The Medullosaceae-structure and relationships. Palaeontographica. 97B: 114167, pls. 10–26.Google Scholar
Dennis, R. L. 1968. A developmental study of roots of presumed seed fern origin from the Upper Pennsylvanian of Illinois. Trans. Illinois St. Acad. Sci. 61: 146156.Google Scholar
Dennis, R. L. 1974. Studies of Paleozoic ferns: Zygopteris from the Middle and Late Pennsylvanian of the United States. Palaeontographica. 148B :95136, pls. 30–48.Google Scholar
Dennis, R. L. and Eggert, D. A. 1978. Parasporotheca, gen. nov., and its bearing on the interpretation of the morphology of permineralized medullosan pollen organs. Bot. Gaz. 139: 117139.Google Scholar
Dilcher, D. 1967. Chlorophyll in der Braunkohle des Geiseltales. Natur und Museum. 97: 124130.Google Scholar
Dilcher, D. L. 1971. A revision of the Eocene flora of southeastern North America. The Palaeobotanist. 20: 718.Google Scholar
Dilcher, D. L. 1973. A paleoclimatic interpretation of the Eocene floras of southeastern North America. pp. 3959. In: Graham, A., ed. Vegetation and Vegetational History of Northern Latin America. Elsevier; Amsterdam.Google Scholar
Dilcher, D. L. 1974. Approaches to the identification of angiosperm leaf remains. Bot. Rev. 40: 1157.CrossRefGoogle Scholar
Dilcher, D. 1979. Early angiosperm reproduction: an introductory report. Rev. Palaeobot. Palynol. 27: 291328.CrossRefGoogle Scholar
Dix, E. 1934. The sequence of floras in the Upper Carboniferous with special reference to South Wales. Trans. R. Soc. Edinburgh. 57: 789838.CrossRefGoogle Scholar
Dodson, J. 1977. Pollen deposition in a small closed drainage basin lake. Rev. Palaeobot. Palynol. 24: 179193.CrossRefGoogle Scholar
Dolph, G. E. and Dilcher, D. 1979. Foliar physiognomy as an aid in determining paleoclimate. Palaeontographica Abt. B. 170: 151172.Google Scholar
Dorf, E. 1968. Cretaceous and early Tertiary plants. In: R. C. Moore et al., eds. Developments, Trends and Outlooks in Paleontology. J. Paleontol. 42: 13271377.Google Scholar
Dorf, E. 1970. Paleobotanical evidence of Mesozoic and Cenozoic climatic changes. Proc. N. Am. Paleontol. Convention. Vol. I: 323346.Google Scholar
Doyle, J. A. 1969. Cretaceous angiosperm pollen of the Atlantic coastal plain and its evolutionary significance. J. Arnold Arb. 50: 135.CrossRefGoogle Scholar
Doyle, J. A. 1977. Patterns of evolution in early angiosperms. pp. 501546. In: Hallam, A., ed. Patterns of Evolution. Elsevier; Amsterdam.Google Scholar
Doyle, J. A. 1978. Origin of angiosperms. Ann. Rev. Ecol. Syst. 9: 365392.CrossRefGoogle Scholar
Doyle, J. A. and Hickey, L. J. 1976. Pollen and leaves from the mid-Cretaceous Potomac Group and their bearing on early angiosperm evolution. pp. 139206. In: Beck, C. B., ed. Origin and Early Evolution of Angiosperms. Columbia; New York.Google Scholar
Eames, J. W. 1936. Morphology of the Vascular Plants: Lower Groups. 433 pp. McGraw-Hill; New York.Google Scholar
Edwards, D. 1973. Devonian floras. Pp 105116. In: Hallam, A., ed. Atlas of Palaeobiogeography. Elsevier; Amsterdam.Google Scholar
Edwards, D. 1979. A late Silurian flora from the Lower Old Red Sandstone of south-west Dyfed. Palaeontology. 22: 2352.Google Scholar
Edwards, D., Bassett, M. G., and Rogerson, E. C. W. 1980. The earliest vascular plants: continuing the search for proof. Lethaia. 12: 313324.CrossRefGoogle Scholar
Edwards, D. and Davies, E. C. W. 1976. Oldest recorded in situ tracheids. Nature. 263: 494495.CrossRefGoogle Scholar
Eggert, D. A. 1961. Ontogeny of the Caroniferous arborescent Lycopsida. Palaeontographica. 108B: 4392, pls. 11–16.Google Scholar
Eggert, D. A. 1962. The ontogeny of Carboniferous arborescent Sphenopsida. Palaeontographica. 110B: 99127, pls. 17–24.Google Scholar
Eggert, D. A. and Delevoryas, T. 1967. Studies of Paleozoic ferns: Sermaya gen. nov. and its bearing on filicalean evolution in the Paleozoic. Palaeontographica. 120B: 169180, pls. 34–38.Google Scholar
Eggert, D. A. and Rothwell, G. W. 1979. Stewartiotheca gen. n. and the nature and origin of complex permineralized medullosan pollen organs. Am. J. Bot. 66: 851866.Google Scholar
Eichmann, R. and Schidlowski, M. 1975. Isotopic fractionation between co-existing organic carbon-carbonate pairs in Precambrian sediments. Geochim. Cosmochim. Acta. 39: 585595.CrossRefGoogle Scholar
Florin, R. 1938–1945. Die Koniferen des Oberkarbons und des Unteren Perms. 18. Palaeontographica. Abt. B, 85.Google Scholar
Florin, R. 1951. Evolution in Cordaitales and Conifers. (Lectures at Harvard University in 1948–49). Acta Horti Bergiana 15(11).Google Scholar
Florin, R. 1963. The distribution of conifer and taxad genera in time and space. Acta Hort. Bergiani 20: 121312.Google Scholar
Foster, A. S. and Gifford, E. M. Jr. 1974. Comparative Morphology of Vascular Plants. W. H. Freeman; San Francisco.Google Scholar
Fowler, K., Edwards, N., and Brett, D. W. 1972. In situ coniferous (taxodiaceous) tree remains in the Upper Eocene of southern England. Palaeontology. 16: 205217.Google Scholar
Frenzel, B. O. 1971. Climatic Fluctuations of the Ice Age. Case Western Reserve Univ. Press; Cleveland, Ohio.Google Scholar
Gensel, P. G. 1977. Morphologic and taxonomic relationships of the Psilotaceae relative to evolutionary lines in early land vascular plants. Brittonia. 29: 1429.CrossRefGoogle Scholar
Gnilovskaia, M. B. 1971. The oldest aquatic plants of the Vendian of the Russian Platform (late Precambrian). Paleontol. J. 5: 372378.Google Scholar
Golubic, S. and Barghoorn, E. S. 1977. Interpretation of microbial fossils with special reference to the Precambrian. pp. 114. In: Flugel, E., ed. Fossil Algae. Springer; New York.Google Scholar
Golubic, S. and Campbell, S. E. 1979. Analogous microbial forms in Recent subaerial habitats and in Precambrian cherts: Gloeothece coerulea Geitler and Eosynechococcus moorei Hofmann. Precambrian Res. 8: 201217.CrossRefGoogle Scholar
Good, C. W. 1971. The ontogeny of Carboniferous articulates: Calamostachys binneyana. Bot. Gaz. 132: 337346.CrossRefGoogle Scholar
Good, C. W. 1971. The ontogeny of Carboniferous articulates: calamite leaves and twigs. Palaeontographica. 133B: 137158, pls. 46–51.Google Scholar
Good, C. W. and Taylor, T. N. 1972. The ontogeny of Carboniferous articulates: the apex of Sphenophyllum. Am. J. Bot. 59: 617626.CrossRefGoogle Scholar
Gould, R. E. and Delevoryas, T. 1977. The biology of Glossopteris: evidence from petrified seed-bearing and pollen-bearing organs. Alcheringa. 1: 387399.CrossRefGoogle Scholar
Gould, S. J. 1977a. Ontogeny and Phylogeny. Harvard Univ. Press: Cambridge, Mass.Google Scholar
Gould, S. J. 1977b. Ever Since Darwin. Norton; Boston.Google Scholar
Gould, S. J. 1980a. The promise of paleobiology as a nomothetic, evolutionary discipline. Paleobiology. 6: 96118.CrossRefGoogle Scholar
Gould, S. J. 1980b. Is a new and general theory of evolution emerging? Paleobiology. 6: 119130.CrossRefGoogle Scholar
Gould, S. J. and Eldredge, N. 1977. Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology. 3: 115151.CrossRefGoogle Scholar
Gray, A. 1879. Plant archaeology, I. The Nation, No. 742, Sept. 18: 195.Google Scholar
Gray, J. and Boucot, A. J. 1971. Early Silurian spore tetrads from New York: earliest New World evidence for vascular plants? Science. 173: 918921.CrossRefGoogle ScholarPubMed
Gray, J. and Boucot, A. J. 1977. Early vascular plants: proof and conjecture. Lethaia. 10: 145174.CrossRefGoogle Scholar
Gregor, H. J. 1977. Subtropische Elemente in europäischen Tertiar. II. (Fruktifikationen) Paläontol. Z. 51: 199226.CrossRefGoogle Scholar
Hall, J. W. and Norton, N. J. 1967. Palynological evidence of floristic change across the Cretaceous-Tertiary boundary in eastern Montana. Palaeogeogr., Palaeoclimat., Palaecol. 3: 121131.CrossRefGoogle Scholar
Harris, T. M. 1976. The Mesozoic gymnosperms. Rev. Palaeobot. Palynol. 21: 119134.CrossRefGoogle Scholar
Havlena, V. 1970. Einige Bemerkungen zur Phytogeographie and Geobotanik des Karbons und Perms. Compte Rendu. 6e Congr. Internat. Strat. Geol. Carbon., Vol. III, pp. 901911.Google Scholar
Hickey, L. J. 1973. Classification of the architecture of dicotyledonous leaves. Am. J. Bot. 60: 1733.CrossRefGoogle Scholar
Hickey, L. J. 1977a. Stratigraphy and paleobotany of the Golden Valley Formation (early Tertiary) of western North America. Geol. Soc. Am. Mem. 150.Google Scholar
Hickey, L. J. 1977b. Changes in angiosperm flora across the Cretaceous-Tertiary boundary. J. Paleontol. 51 (supplement to No. 2):1415.Google Scholar
Hickey, L. J. and Doyle, J. A. 1977. Early Cretaceous fossil evidence for angiosperm evolution. Bot. Rev. 43: 3104.CrossRefGoogle Scholar
Hill, C. R. 1974. Palaeobotanical and Sedimentological Studies on the Lower Bajocian (Middle Jurassic) Flora of Yorkshire. 281 pp. Thesis, Univ. Leeds.Google Scholar
Hofmann, J. H. and Aitken, J. D. 1979. Precambrian biota from the Little Dal Group, Mackenzie Mountains, northwestern Canada. Can. J. Earth Sci. 16: 150166.CrossRefGoogle Scholar
Hsü, J. 1976 (issued December 1978). On the palaeobotanical evidence for continental drift and Himalayan uplift. The Palaeobotanist. 25: 131145.Google Scholar
Hughes, N. F. 1961. Fossil evidence and angiosperm ancestry. Sci. Progr. 48: 84102.Google Scholar
Hughes, N. F. 1976. Palaeobiology of Angiosperm Origins. Cambridge Univ.; Cambridge, U.K.Google Scholar
Hughes, N. F. and Smart, J. 1967. Plant-insect relationships in Palaeozoic and later time. pp. 107117. In: Harland, W. B. et al., eds. The Fossil Record. Geol. Soc.; London.Google Scholar
Jarzen, D. M. 1976. Angiosperm pollen as indicators of Cretaceous-Tertiary environments. Syllogeus. 12: 3949.Google Scholar
Kaufmann, K. W. 1977. Demography of colonial animals: bryozoans are plants, after all. J. Paleontol. 51 (supplement to No. 2):17.Google Scholar
Kevan, P. G., Chaloner, W. G., and Savile, D. B. O. 1975. Interrelationships of early terrestrial arthropods and plants. Palaeontology. 18: 391417.Google Scholar
Kidston, R. and Lang, W. H. 1917. On Old Red Sandstone plants showing structure from the Rhynie Chert Bed, Aberdeenshire. Part I. Rhynia gwynne-vaughani, Kidston and Lang. Trans. R. Soc. Edinburgh. 51: 761784.Google Scholar
Kidston, R. and Lang, W. H. 1920a. On Old Red Sandstone plants showing structure from the Rhynie Chert Bed, Aberdeenshire. Part II. Additional note on Rhynia gwynne-vaughani, Kidston and Lang; with descriptions of Rhynia major, n. sp. and Hornea lignieri, n.g., n. sp. Trans. R. Soc. Edinburgh. 52: 603627.Google Scholar
Kidston, R. and Lang, W. H. 1920b. On Old Red Sandstone plants showing structure from the Rhynie Chert Bed, Aberdeenshire. Part III. Asteroxylon mackiei, Kidston and Lang. Trans. R. Soc. Edinburgh. 52: 643680.Google Scholar
Kidston, R. and Lang, W. H. 1921. On Old Red Sandstone plants showing structure from the Rhynie Chert Bed, Aberdeenshire. Part IV. Restorations of the vascular cryptogams and discussion of their bearing on the general morphology of the pteridophyta and the origin of the organization of land plants. Trans. R. Soc. Edinburgh. 52: 831854.Google Scholar
Knoll, A. H. 1979. Archean photoautotrophy: Some alternatives and limits. Origins of Life. 9: 313327.CrossRefGoogle ScholarPubMed
Knoll, A. H. 1980. Planktonic microfossils in stromatolitic carbonates from Svalbard. Abstr. 5th Int. Palynol. Conf., Cambridge, U.K.:203.Google Scholar
Knoll, A. H. 1981. Paleoecology of late Precambrian microbial assemblages. In: Niklas, K. J., ed. Paleobotany, Paleoecology, and Evolution. Praeger; New York, in press.Google Scholar
Knoll, A. H. and Golubic, S. 1979. Anatomy and taphonomy of a Precambrian algal stromatolite. Precambrian Res. 10: 115151.CrossRefGoogle Scholar
Knoll, A. H., Niklas, K. J. and Tiffney, B. H. 1979. Phanerozoic land plant diversity in North America. Science. 206: 14001402.CrossRefGoogle ScholarPubMed
Knoll, A. H. and Vidal, G. 1980. Late Proterozoic vase-shaped microfossils from the Visingsö Beds, Sweden. Geol. Fören. Stockholm Forh., in press.CrossRefGoogle Scholar
Kozlowski, T. T. 1971. Growth and Development of Trees. Academic Press; New York.Google Scholar
Krassilov, V. A. 1972. Phytogeographic classification of Mesozoic floras and their bearing on continental drift. Nature. 237: 4950.CrossRefGoogle Scholar
Krassilov, V. A. 1973. Climatic changes in eastern Asia as indicated by fossil floras. I. Early Cretaceous. Palaeogeogr., Palaeoclimat., Palaeoecol. 13: 261273.CrossRefGoogle Scholar
Krassilov, V. A. 1975. Paleoecology of Terrestrial Plants. 283 pp. Wiley: New York.Google Scholar
Krassilov, V. A. 1978. Late Cretaceous gymnosperms from Sakhalin and the terminal Cretaceous event. Palaeontology. 21: 893905.Google Scholar
Kremp, G. O. W. 1974. A re-evaluation of global plant geographic provinces of the Late Paleozoic. Rev. Palaeobot. Palynol. 17: 113132.CrossRefGoogle Scholar
Lacey, W. S. 1975. Some problems of mixed floras in the Permian of Gondwanaland. pp. 125134. In: Campbell, K. S. W., ed. Gondwana Geology. Aust. Nat. Univ. Press; Canberra.Google Scholar
Lak Hanpal, R. N. 1907. Tertiary floras of India and their bearing on the historical geology of the region. Taxon. 19: 675694.CrossRefGoogle Scholar
Lang, W. H. 1937. On the plant remains from the Downtonian of England and Wales. Phil. Trans. R. Soc. London. 227B: 245291.Google Scholar
Lawrence, D. R. 1968. Taphonomy and information losses in fossil communities. Geol. Soc. Am. Bull. 79: 13151330.CrossRefGoogle Scholar
Lele, K. M. 1976. Late Paleozoic and Triassic floras of India and their relation to the floras of northern and southern hemispheres. The Palaeobotanist. 23: 89115.Google Scholar
Levin, D. A. 1979. The nature of plant species. Science. 204: 381384.CrossRefGoogle ScholarPubMed
Lowe, D. R. 1980. Stromatolites 3400-Myr old from the Archaean of Western Australia. Nature. 284: 441443.CrossRefGoogle Scholar
MacGinitie, H. D. 1969. The fossil flora of the Green River beds in northwestern Colorado and northeastern Utah. Univ. Calif. Publ. Geol. Sci. 83: 1140.Google Scholar
MacGregor, A. M. 1941. A pre-Cambrian algal limestone in southern Rhodesia. Trans. Geol. Soc. S. Afr. 43: 916.Google Scholar
Mai, D. H. 1970. Change of climate and biostratigraphy in the continental younger Tertiary of Boreal Province. Giornale di Geologia 35(1): 8590.Google Scholar
Manchester, S. R. and Dilcher, D. L. 1980. Platanophyllum angustiloba leaves and associated wood and fruits from the Eocene Clarno Formation of Oregon. Bot. Soc. Am. Misc. Publ. 158: 70 (Abstract).Google Scholar
Marvin, U. 1973. Continental Drift. The Evolution of a Concept. Smithsonian; Washington.Google Scholar
McKirdy, D. M. 1974. Organic chemistry in Precambrian research. Precambrian Res. 1: 75137.CrossRefGoogle Scholar
Meyen, S. V. 1976 (issued December 1978). Permian conifers of West Angaraland and new puzzles in the coniferalean phylogeny. The Palaeobotanist. 25: 298313.Google Scholar
Millay, M. A. and Eggert, D. A. 1974. Microgametophyte development in the Paleozoic seed fern family Callistophytaceae. Am. J. Bot. 61: 10671075.CrossRefGoogle Scholar
Millay, M. A. and Taylor, T. N. 1970. Studies of living and fossil saccate pollen grains. Micropaleontology. 16: 463470.CrossRefGoogle Scholar
Millay, M. A. and Taylor, T. N. 1979. Paleozoic seed fern pollen organs. Bot. Rev. 45: 301375.CrossRefGoogle Scholar
Monster, J., Appel, P. W. U., Thode, H. G., Schidlowski, M., Carmichael, C. M., and Bridgwater, D. 1979. Sulfur isotope studies in early Archean sediments from Isua, West Greenland: Implications for the antiquity of bacterial suphate reduction. Geochim. Cosmochim. Acta. 43: 405414.CrossRefGoogle Scholar
Morgan, J. 1959. The morphology and anatomy of American species of the genus Psaronius. Illinois Biol. Monographs. 27: 1108.Google Scholar
Muller, J. 1970. Palynological evidence on early differentiation of angiosperms. Biol. Rev. 45: 417450.CrossRefGoogle Scholar
Namboodri, K. K. and Beck, C. B. 1968. A comparative study of the primary vascular system of conifers. III. Stelar evolution in gymnosperms. Am. J. Bot. 55: 464472.Google Scholar
Niklas, K. J. 1976a. Chemotaxonomy of Prototaxites and evidence for possible terrestrial adaptation. Rev. Palaeobot. Palynol. 22: 117.CrossRefGoogle Scholar
Niklas, K. J. 1976b. Chemical examination of some Paleozoic plants. Brittonia. 28: 113137.CrossRefGoogle Scholar
Niklas, K. J. 1976c. Organic chemistry of Protosalvinia (=Foerstia) from the Chattanooga and New Albany Shales. Rev. Palaeobot. Palynol. 22: 265279.CrossRefGoogle Scholar
Niklas, K. J. 1976d. Plant evolution and the reciprocity model. Ann. Bot. 40: 12551264.CrossRefGoogle Scholar
Niklas, K. J. 1978. Morphometric relationships and rates of evolution among Paleozoic vascular plants. Evol. Biol. 11: 509543.Google Scholar
Niklas, K. J., Brown, R. M. Jr., Santos, R., and Vian, B. 1978. Ultrastructure and cytochemistry of Miocene angiosperm leaf tissues. Proc. Natl. Acad. Sci. 75: 32633267.CrossRefGoogle ScholarPubMed
Niklas, K. J. and Chaloner, W. G. 1976. Chemotaxonomy of some problematic Paleozoic plants. Rev. Palaeobot. Palynol. 22: 81104.CrossRefGoogle Scholar
Niklas, K. J. and Gensel, P. G. 1976. Chemotaxonomy of some Paleozoic vascular plants. Part I: Chemical compositions and preliminary cluster analysis. Brittonia. 28: 353378.Google Scholar
Niklas, K. J. and Gensel, P. G. 1977. Chemotaxonomy of some Paleozoic vascular plants. Part II: Chemical characterization of major plant groups. Brittonia. 29: 100111.Google Scholar
Niklas, K. J. and Giannasi, D. E. 1977. Flavonoids and other chemical constituents of fossil Miocene Zelkova (Ulmaceae). Science. 196: 877878.CrossRefGoogle ScholarPubMed
Niklas, K. J. and Giannasi, D. E. 1978. Angiosperm paleo-biochemistry of the Succor Creek flora (Miocene), Oregon, U.S.A. Am. J. Bot. 65: 943952.CrossRefGoogle Scholar
Niklas, K. J. and Phillips, T. L. 1976. Morphology of Protosalvinia from the Upper Devonian of Ohio and Kentucky. Am. J. Bot. 63: 929.CrossRefGoogle Scholar
Niklas, K. J. and Pratt, L. M. 1980. Evidence for lignin-like constituents in Early Silurian (Llandoverian) plant fossils. Science. 209: 396397.CrossRefGoogle ScholarPubMed
Niklas, K. J., Tiffney, B. H., and Knoll, A. H. 1980. Apparent changes in the diversity of fossil plants: a preliminary assessment. Evol. Biol. 12: 189.Google Scholar
Oliver, F. W. and Scott, D. H. 1904. On the structure of the Paleozoic seed Lagenostoma lomaxi, with a statement of the evidence upon which it is referred to Lyginodendron. Phil. Trans. R. Soc. London. 231B: 193247.Google Scholar
Oshurkova, M. V. 1974. Facies-paleoecologic approach to the study of fossilized remains of plants. Paleontol. J. 3: 8796.Google Scholar
Parker, L. R. 1977. The paleoecology of the fluvial coal-forming swamps and associated floodplain environments in the Blackhawk Formation (Upper Cretaceous) of central Utah. Brigham Young Univ. Geol. Studies. 22: 99116.Google Scholar
Petersen, G. M., et al. 1979. The continental record of environmental conditions at 18,000 yr. B.P.: an initial evaluation. Quat. Res. 12: 4782.Google Scholar
Pfefferkorn, H. W. 1980. A note on the term “Upland flora.” Rev. Palaeobot. Palynol. 30: 157158.CrossRefGoogle Scholar
Pfefferkorn, H. W., Mustafa, H., and Haas, H. 1975. Quantitative Charakterisierung oberkarboner Abdruckfloren. N. Jb. Geol. Palaeontol. Abh. 150: 253269.Google Scholar
Phillips, T. L. 1979. Reproduction of heterosporous arborescent lycopods in the Mississippian-Pennsylvanian of Euramerica. Rev. Palaeobot. Palynol. 27: 239289.CrossRefGoogle Scholar
Phillips, T. L. and DiMichele, W. 1981. Paleoecology of Middle Pennsylvanian age coal swamps in southern Illinois—Herrin Coal Member at Sahara Mine No. 6, in press. In: Niklas, K. J., ed. Paleobotany, Paleoecology, and Evolution. Praeger; New York.Google Scholar
Phillips, T. L., Peppers, R. A., Avcin, M. J., and Laughnan, P. F. 1974. Fossil plants and coal: patterns of change in Pennsylvanian coal swamps of the Illinois Basin. Science. 187: 13671369.CrossRefGoogle Scholar
Plumstead, E. P. 1973. The late Palaeozoic Glossopteris flora. pp. 187205. In: Hallam, A., ed. Atlas of Palaeobiogeography. Elsevier; Amsterdam.Google Scholar
Prager, E. M., Fowler, D. P., and Wilson, A. C. 1976. Rates of evolution in conifers (Pinaceae). Evolution. 30: 637649.CrossRefGoogle ScholarPubMed
Pratt, L. M., Phillips, T. L., and Dennison, J. M. 1978. Evidence of non-vascular land plants from the early Silurian (Llandoverian) of Virginia, U.S.A. Rev. Palaeobot. Palynol. 25: 121149.CrossRefGoogle Scholar
Ramanujam, C. G. K. and Stewart, W. N. 1969. A Lepidocarpon cone tip from the Pennsylvanian of Illinois. Palaeontographica. 127B: 159167, pls. 46–50.Google Scholar
Raven, P. H. and Axelrod, D. I. 1974. Angiosperm biogeography and post continental movements. Ann. Missouri Bot. Gard. 61: 539673.CrossRefGoogle Scholar
Reid, E. M. and Chandler, M. E. J. 1933. The London Clay flora. Brit. Mus. Nat. Hist., pp. 1561.Google Scholar
Retallack, G. J. 1975. The life and times of a Triassic lycopod. Alcheringa. 1: 329.CrossRefGoogle Scholar
Retallack, G. J. 1977. Reconstructing Triassic vegetation of eastern Australasia: a new approach for the biostratigraphy of Gondwanaland. Alcheringa. 1: 247277.CrossRefGoogle Scholar
Richardson, J. B. and Lister, T. R. 1969. Upper Silurian and Lower Devonian spore assemblages from the Welsh Borderland and South Wales. Palaeontology. 12: 201252.Google Scholar
Richardson, J. B. and Ioannides, N. 1973. Silurian palynomorphs from the Tanezzuft and Acacus Formations, Tripolitania, North Africa. Micropaleontology. 19: 257307.CrossRefGoogle Scholar
Roth, J. L. and Dilcher, D. L. 1979. Investigations of angiosperms from the Eocene of North America: stipulate leaves of the Rubiaceae including a probable polyploid population. Am. J. Bot. 66: 11941207.CrossRefGoogle Scholar
Rothwell, G. W. 1971. Ontogeny of the Paleozoic ovule, Callospermarion pusillum. Am. J. Bot. 58: 706715.CrossRefGoogle Scholar
Rothwell, G. W. 1976. Primary vasculature and gymnosperm systematics. Rev. Palaebot. Palynol. 22: 193206.CrossRefGoogle Scholar
Rothwell, G. W. 1980a. Permineralized parts of putative primitive gymnosperms. Bot. Soc. Am. Misc. Ser. Pub. 158: 98. (Abstract).Google Scholar
Rothwell, G. W. 1980b. The Callistophytales (Pteridospermopsida): reproductively sophisticated Paleozoic gymnosperms. Rev. Palaeobot. Palynol. in press.CrossRefGoogle Scholar
Rothwell, G. W. 1980c. The Callistophytaceae (Pteridospermopsida) II. Reproductive features. Palaeontographica. 173B: 85106, pls. 1–9.Google Scholar
Rothwell, G. W. 1981. Cordaianthus duquesnensis sp. nov., anatomically preserved ovulate cones from the Upper Pennsylvanian of Ohio. Am. J. Bot., in press.Google Scholar
Scheckler, S. E. 1976. Ontogeny of progymnosperms I. Shoots of Upper Devonian Aneurophytales. Can. J. Bot. 54: 202219.Google Scholar
Scheckler, S. E. 1978. Ontogeny of progymnosperms. II. Shoots of Upper Devonian Archaeopteridales. Can. J. Bot. 56: 31363170.Google Scholar
Scheihing, M. H. and Pfefferkorn, H. W. 1980. Morphologic variation in Alethopteris (Pteridosperms, Carboniferous) from St. Clair, Pennsylvania, U.S.A. Palaeontographica Abt. B. 172: 19.Google Scholar
Schidlowski, M., Appel, P. W. U., Eichmann, R., and Junge, C. E. 1979. Carbon isotope geochemistry of 3.7 × 109-yr.-old Isua sediments, West Greenland: implications for the Archean carbon and oxygen cycles. Geochim. Cosmochim. Acta. 43: 189199.CrossRefGoogle Scholar
Schopf, J. M. 1948. Variable coalification: the processes involved in coal formation. Econ. Geol. 43: 207225.CrossRefGoogle Scholar
Schopf, J. M. 1975. Modes of fossil preservation. Rev. Palaeobot. Palynol. 20: 2753.CrossRefGoogle Scholar
Schopf, J. M., Menscher, E., Boucot, A. J., and Andrews, H. N. 1966. Erect plants in the early Silurian of Maine. U.S. Geol. Surv. Prof. Pap. 550: 6975.Google Scholar
Schopf, J. W. 1975. Precambrian paleobiology: problems and perspectives. Ann. Rev. Earth Planet. Sci. 3: 212249.CrossRefGoogle Scholar
Schopf, J. W. 1978. Precambrian life. pp. 641652. In: Fairbridge, R. H. and Jablonski, D., eds. The Encyclopedia of Paleontology. McGraw-Hill; New York.Google Scholar
Schuster, R. M. 1976. Plate tectonics and its bearing on the geographical origin and dispersal of angiosperms. pp. 48138. In: Beck, C. B., ed. Origin and Early Evolution of Angiosperms. Columbia Univ. Press., New York.Google Scholar
Schweitzer, H. J. 1963. Der weibliche Zapfen von Pseudovoltzia liebeana und seine Bedentung für die phylogenic der Knofieren. Palaeontographica Abt. B. 113: 129.Google Scholar
Scott, A. C. 1977. A review of the ecology of upper Carboniferous plant assemblages with new data from Strathclyde. Palaeontology 20: 447473.Google Scholar
Scott, A. C. 1978. Sedimentological and ecological control of Westphalian B plant assemblages from West Yorkshire. Proc. Yorkshire Geol. Soc. 41: 461508.CrossRefGoogle Scholar
Scott, R. A., Barghoorn, E. S., and Leopold, E. B. 1960. How old are the angiosperms? Am. J. Sci. 258A: 284299.Google Scholar
Sepkoski, J. J. Jr. 1978. A kinetic model of Phanerozoic taxonomic diversity I. Analysis of marine orders. Paleobiology. 4: 223251.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1979. A kinetic model of Phanerozoic taxonomic diversity II. Early Phanerozoic families and multiple equilibria. Paleobiology. 5: 222251.Google Scholar
Sepkoski, J. J. Jr. 1980. The three evolutionary faunas of the Phanerozoic marine fossil record. Geol. Soc. Am., Abstr. with Programs. 12(7): 520.Google Scholar
Smart, J. and Hughes, N. F. 1973. The insect and the plant: Progressive palaeoecological integration. In: van Enden, H. F., ed. Insect/Plant Relationships. Sympos. Roy. Entemol. Soc. 6: 143155.Google Scholar
Spicer, R. A. 1975. The Sorting of Plant Remains in a Recent Depositional Environment. 309 pp. Thesis, Imperial College, Univ. London.Google Scholar
Spicer, R. A. and Hill, C. R. 1979. Principal Components and Correspondence Analysis of quantitative data from a Jurassic plant bed. Rev. Palaeobot. Palynol. 28: 273299.CrossRefGoogle Scholar
Stanley, S. M. 1979. Macroevolution. W. H. Freeman; San Francisco.Google Scholar
Stebbins, G. L. 1974. Flowering Plants: Evolution above the Species Level. Harvard Univ. Press; Cambridge, Mass.CrossRefGoogle Scholar
Stebbins, G. L. 1976. Seeds, seedlings, and the origin of angiosperms. pp. 300311. In: Beck, C. B., ed. Origin and Early Evolution of Angiosperms. Columbia; New York.Google Scholar
Stewart, W. N. 1951. A new Pachytesta from the Berryville Locality of southeastern Illinois. Am. Midl. Nat. 46: 717742.CrossRefGoogle Scholar
Stidd, B. M. and Hall, J. W. 1970a. Callandrium callistophytoides gen. et sp.n., the probable pollen-bearing organ of the seed fern Callistophyton. Am. J. Bot. 57: 394403.Google Scholar
Stidd, B. M. and Hall, J. W. 1970b. The natural affinity of the Carboniferous seed, Callospermarion. Am. J. Bot. 57: 827836.CrossRefGoogle Scholar
Stidd, B. M., Leisman, G. A., and Phillips, T. L. 1977. Sullitheca dactylifera gen. et sp. n.: a new medullosan pollen organ and its evolutionary significance. Am. J. Bot. 64: 9941002.Google Scholar
Stockey, R. A. 1978. Reproductive biology of Cerro Cuadrado fossil conifers: ontogeny and reproductive strategies in Araucaria mirabilis (Spegazzini) Windhausen. Palaeontographica. 166B: 115, pls. 1–6.Google Scholar
Strother, P. K. and Traverse, A. 1979. Plant microfossils from Llandoverian and Wenlockian rocks of Pennsylvania. Palynology. 3: 121.CrossRefGoogle Scholar
Stubblefield, S. P. and Rothwell, G. W. 1981. Embryogeny and reproductive biology of Bothrodendrostrobus mundus (Lycopsida). Am. J. Bot., in press.CrossRefGoogle Scholar
Sullivan, H. J. 1967. Regional differences in Mississippian spore assemblages. Rev. Palaeobot. Palynol. 1: 185192.CrossRefGoogle Scholar
Swain, T. and Cooper-Driver, G. 1981. Biochemical evolution in early land plants, in press. In: Niklas, K. J., ed. Paleobotany, Paleoecology, and Evolution. Praeger; New York.Google Scholar
Takhtajan, A. 1972. Patterns of ontogenetic alterations in the evolution of higher plants. Phytomorphology. 22: 164171.Google Scholar
Takhtajan, A. 1976. Neoteny and the origin of flowering plants. pp. 207219. In: Beck, C. B., ed. Origin and Early Evolution of Angiosperms. Columbia Univ. Press; New York.Google Scholar
Talbert, C. M. and Holch, A. E. 1957. A study of the lobing of sun and shade leaves in Morus pendula. Ecology. 38: 655658.CrossRefGoogle Scholar
Taylor, T. N. 1970. Lasiostrobus gen. n., a staminate strobilus of gymnospermous affinity from the Pennsylvanian of North America. Am. J. Bot. 57: 670690.Google Scholar
Taylor, T. N. 1976. The ultrastructure of Schopfipollenites: orbicules and tapetal membranes. Am. J. Bot. 63: 857862.CrossRefGoogle Scholar
Thomas, H. H. 1925. The Caytoniales, a new group of angiospermous plants from the Jurassic rocks of Yorkshire. Phil. Trans. R. Soc. London. 231B: 299363.Google Scholar
Tiffney, B. H. 1977a. Dicotyledonous angiosperm flower from the Upper Cretaceous of Martha's Vineyard, Massachusetts. Nature. 265: 136137.CrossRefGoogle Scholar
Tiffney, B. H. 1977b. Contributions to a monograph of the fruit and seed flora of the Brandon Lignite. Unpublished Thesis, Harvard Univ.; Cambridge, Mass.Google Scholar
Tiffney, B. H. 1978. Climatic implications of the flora of the mid-Oligocene Brandon Lignite of west-central Vermont. Bot. Soc. Am., Misc. Publ. 156: 79 (Abs.)Google Scholar
Tiffney, B. H. 1981. Diversity and major events in the evolution of land plants, in press. In: Niklas, K. J., ed. Paleobotany, Paleoecology and Evolution. Praeger; New York.Google Scholar
Timofeev, B. V. 1959. Ancient flora of the Baltic area and its stratigraphic significance. Trudy Inst. All-Union Sci. Invest. Prosp. Petrol. 129, 320 pp. (In Russian).Google Scholar
Timofeev, B. V. 1969. Proterozoic Sphaeromorphs. Akad. Nauk. SSSR, Inst. Geol. Geokhronol. Dokembriya. Nauka; Leningrad. (In Russian).Google Scholar
Tyler, S. A. and Barghoorn, E. S. 1954. Occurrence of structurally preserved plants in Precambrian rocks of the Canadian Shield. Science. 119: 606608.CrossRefGoogle ScholarPubMed
Vakhrameev, V. A., Dobrushina, I. A., Meyen, S. V., and Zaklinskaia, E. D. 1978. Paläozoische und Mesozoische Floren Eurasiens und die Phytogeographie dieser Zeit. Gustav Fischer; Jena.Google Scholar
Vidal, G. 1976. Late Precambrian microfossils from the Visingsö Beds in southern Sweden. Fossils and Strata. 9: 157.CrossRefGoogle Scholar
Vidal, G. 1979. Acritarchs and the correlation of the Upper Proterozoic. Publ. Inst. Mineral., Palaeontol., Quat. Geol. Univ. Lund. 219: 121.Google Scholar
Walter, M. R., Buick, J. R., and Dunlop, J. S. R. 1980. Stromatolites 3400–3500 Myr old from the North Pole area, Western Australia. Nature. 284: 443445.CrossRefGoogle Scholar
Webb, T. III. 1974. Corresponding patterns of pollen and vegetation in pollen and vegetation in lower Michigan: a comparison of quantitative data. Ecology. 55: 1728.CrossRefGoogle Scholar
Weigelt, J. 1928. Die Pflanzenreste des Mitteldeutschen Kupferschiefers und ihre Einschaltung ins sediment. Forts. Geol. Paläontol. 6(19): 395592.Google Scholar
Wesley, A. 1973. Jurassic plants. pp. 329338. In: Hallam, A., ed. Atlas of Palaeobiogeography. Elsevier; Amsterdam.Google Scholar
White, M. J. D. 1978. Modes of Speciation. W. H. Freeman; San Francisco.Google Scholar
Whittaker, R. H. 1975. Communities and Ecosystems. Macmillan; New York.Google Scholar
Whittaker, R. H. 1977. Evolution of species diversity in land communities. Evol. Biol. 10: 167.Google Scholar
Wolfe, J. A. 1971. Tertiary climatic fluctuations and methods of analysis of Tertiary floras. Palaeogeogr., Palaeoclimatol., Palaeoecol. 9: 2757.CrossRefGoogle Scholar
Wolfe, J. A. 1975. Some aspects of plant geography of the Northern Hemisphere during the Late Cretaceous and Tertiary. Ann. Missouri Bot. Gard. 62: 264279.CrossRefGoogle Scholar
Wolfe, J. A. 1977. Paleogene floras from the Gulf of Alaska region. U.S. Geol. Surv. Prof. Pap. 997: 1108.Google Scholar
Wolfe, J. A. 1978. A paleobotanical interpretation of Tertiary climates in the northern hemisphere. Am. Sci. 66: 694703.Google Scholar
Wolfe, J. A. 1980. Tertiary climates and floristic relationships at high altitudes in the Northern Hemisphere. Palaeogeogr., Palaeoclimatol., Palaeoecol. 30: 313324.CrossRefGoogle Scholar
Young, R. B. 1935. A comparison of certain stromatolitic rocks in the Dolomite Series of South Africa with modern algal sediments in the Bahamas. Trans. Geol. Soc. S. Africa. 37: 153162.Google Scholar
Zaklinskaia, E. D. 1966. Pollen of angiosperms and its significance for the stratigraphy of the Upper Cretaceous and Paleogene. Trudy Inst. Geol. Nauk SSSR, Geol. Series. 74: 1258. (In Russian).Google Scholar
Ziegler, A. M., Bambach, R. K., Parrish, J. T., Barrett, S. F., Gierlowski, E. H., Parker, W. C., Raymond, A. L., and Sepkoski, J. J. Jr. 1981. Paleozoic biogeography and climatology. In: Niklas, K., ed. Paleobotany, Paleoecology, and Evolution. Praeger; New York, in press.Google Scholar