Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-18T20:35:06.995Z Has data issue: false hasContentIssue false

Probing the cassiduloid origins of clypeasteroid echinoids using stratigraphically restricted parsimony analysis

Published online by Cambridge University Press:  08 February 2016

Andrew. B. Smith*
Affiliation:
Department of Palaeontology, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom. E-mail: a.smith@nhm.ac.uk

Abstract

Clypeasteroid echinoids are a familiar and easily defined clade with a cryptic origin. They first appear in the late Paleocene and are believed to have arisen from cassiduloid ancestry, but identifying sister-group relationships more precisely has proved difficult. Two factors are responsible for this problem, the extreme morphological conservatism of cassiduloids, which has given rise to high levels of character exhaustion, and the origin of crown-group clypeasteroids through paedomorphosis. Previous analyses, based on extant representatives alone or including all Mesozoic to Recent genera, have proved unsatisfactory.

Here a parsimony analysis is undertaken using a restricted set of all stem-group clypeasteroids and cassiduloid taxa that existed immediately prior to the appearance of crown-group clypeasteroids. Inclusion of Togocyamus, the fossil taxon lying closest to the origin of crown-group clypeasteroids, is phylogenetically uninformative because that taxon is highly paedomorphic and has only generalized juvenile characteristics. However, earlier stem-group plesions provide critical data that identify Apatopygidae as extant sister group to the Clypeasteroida. Stratigraphically restricted analyses cannot eradicate the problems that arise from character exhaustion, but can minimize these with respect to specific phylogenetic questions.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ausich, W. I. 1998a. Early phylogeny and subclass division of the Crinoidea (Phylum Echinodermata). Journal of Paleontology 72:499510.CrossRefGoogle Scholar
Ausich, W. I. 1998b. Phylogeny of Arenig to Caradoc crinoids (Phylum Echinodermata) and suprageneric classification of the Crinoidea. University of Kansas Paleontological Contributions, new series 9:136.Google Scholar
Baker, A. N. 1983. A new apatopygid echinoid genus from New Zealand (Echinodermata: Cassiduloida). Records of the National Museum of New Zealand 2:163173.Google Scholar
Brochu, C. 1997. Morphology, fossils, divergence timing and the phylogenetic relationships of Gavialis. Systematic Biology 46:479522.CrossRefGoogle ScholarPubMed
Donoghue, M. J., Doyle, J., Gauthier, J., Kluge, A., and Rowe, T. 1989. The importance of fossils in phylogeny reconstruction. Annual Reviews in Ecology and Systematics 20:431460.CrossRefGoogle Scholar
Durham, J. W. 1955. Classification of clypeasteroid echinoids. University of California Publications in Geological Sciences 31(4):73198.Google Scholar
Durham, J. W. 1966a. Classification. Pp. U270U295in Durham, et al. 1966.Google Scholar
Durham, J. W. 1966b. Clypeasteroids. Pp. U450U491in Durham et al. 1966.Google Scholar
Durham, J. W., and Melville, R. V. 1957. A classification of echinoids. Journal of Paleontology 31:242272.Google Scholar
Durham, J. W., and Wagner, C. D. 1966. Neolampadoids, p. U628only, in Durham, et al. 1966.Google Scholar
Durham, J. W. et al. 1966. Echinodermata 3. Part U ofMoore, R. C., ed. Treatise on invertebrate paleontology. Geological Society of America and University of Kansas, New York.Google Scholar
Eriksson, T., and Wikström, N. 1998. AutoDecay, Version 3.0. Computer program distributed by the authors.Google Scholar
Felsenstein, J. 1978. Cases in which parsimony or compatibility methods will be positively misleading. Systematic Zoology 27:401410.CrossRefGoogle Scholar
Hawkins, H. L. 1912. Classification, morphology, and evolution of the Echinoidea Holectypoida. Proceedings of the Zoological Society of London 1912:440497.CrossRefGoogle Scholar
Hawkins, H. L. 1920. Morphological studies on the Echinoidea Holectypoida and their allies. X. On Apatopygus gen. nov. and the affinities of some Recent Nucleolitoida and Cassiduloida. Geological Magazine 57:393401, Plate 7.CrossRefGoogle Scholar
Holmes, F. C. 1999. Australian Tertiary Apatopygidae (Echinoidea). Proceedings of the Royal Society of Victoria 111:5170.Google Scholar
Huelsenbeck, J. P. 1991. When are fossils better than extant taxa in phylogenetic analysis? Systematic Zoology 40:458469.CrossRefGoogle Scholar
Huelsenbeck, J. P., and Hillis, D. M. 1993. Success of phylogenetic methods in the four-taxon case. Systematic Biology 42:247264.CrossRefGoogle Scholar
Jensen, M. 1981. Morphology and classification of Euechinoidea Bronn, 1860; a cladistic analysis. Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening i Kj⊘benhavn 143:799.Google Scholar
Kier, P. M. 1962. Revision of the cassiduloid echinoids. Smithsonian Miscellaneous Collections 144(3):1262, Plates 1–44.Google Scholar
Kier, P. M. 1967. Revision of the oligopygoid echinoids. Smithsonian Miscellaneous Collections 152(2):1147, Plates 1–36.Google Scholar
Kier, P. M. 1970. Lantern support structures in the clypeasteroid echinoids. Journal of Paleontology 44:98109.Google Scholar
Kier, P. M. 1974. Evolutionary trends and their functional significance in the post-Paleozoic echinoids. Paleontological Society Memoir 5. Journal of Paleontology 48(Suppl. to No. 3):195.CrossRefGoogle Scholar
Kier, P. M. 1982. Rapid evolution in echinoids. Palaeontology 25:19.Google Scholar
Lecointre, G., Philippe, H., Le, H. V. L., and Le Guyader, H. 1993. Species sampling has a major impact on phylogenetic inference. Molecular Phylogeny and Evolution 2:205224.CrossRefGoogle Scholar
Lee, M. S. Y. 1998. Convergent evolution and character correlation in burrowing reptiles: towards a resolution of squamate relationships. Biological Journal of the Linnean Society 65:369453.CrossRefGoogle Scholar
Loriol, P. de 1880. Monographie des échinides contenus dans les Couches Nummulitiques de l'Egypte. Mémoires de la Société de Physique et d'Histoire Naturelle de Genève 27:59148, Plates 1–11.Google Scholar
Loriol, P. de 1881. Eocaene Echinoideen aus Aegypten und der libyschen Wüste. Palaeontographica 30:120, 11 plates.Google Scholar
Michelin, H. 1851. Description de quelques nouvelles espèces d'Echinides. Revue et Magazin de Zoologie, series 2, 3:9293, Plates 2, 3.Google Scholar
Mooi, R. 1989. Living and fossil genera of Clypeasteroida (Echinoidea: Echinodermata): an illustrated key and annotated checklist. Smithsonian Contributions to Zoology 488:151.CrossRefGoogle Scholar
Mooi, R. 1990a. Paedomorphosis, Aristotle's lantern, and the origin of the sand dollars (Echinodermata: Clypeasteroida). Paleobiology 16:2548.CrossRefGoogle Scholar
Mooi, R. 1990b. Living cassiduloids (Echinodermata: Echinoidea): a key and annotated list. Proceedings of the Biological Society of Washington 103:6385.Google Scholar
Mooi, R. 1992. A new “living fossil” echinoid (Echinodermata) and the ecology and paleobiology of Caribbean cassiduloids. Bulletin of Marine Science 46:688700.Google Scholar
Mooi, R., and Chen, C.-P. 1996. Weight belts, diverticula, and the phylogeny of the sand dollars. Bulletin of Marine Science 58:186195.Google Scholar
Mortensen, T. 1921. Studies of the development and larval forms of echinoderms. G. E. C. Gad, Copenhagen, 266 pp., 33 plates.CrossRefGoogle Scholar
Mortensen, T. 1928–1951. A monograph of the Echinoidea, Vols. 1–5. C. A. Reitzel, Copenhagen.Google Scholar
Mortensen, T. 1948. A monograph of the Echinoidea, Vol. 4. 1. Holectypoida, Cassiduloida. C. A. Reitzel, Copenhagen.Google Scholar
Phelan, T. F. 1977. Comments on the water vascular system, food grooves, and ancestry of the clypeasteroid echinoids. Bulletin of Marine Science 27:400422.Google Scholar
Philip, G. M. 1963. Two Australian Tertiary neolampadids, and the classification of cassiduloid echinoids. Palaeontology 6:718726.Google Scholar
Philip, G. M. 1965. Classification of echinoids. Journal of Paleontology 39:4562.Google Scholar
Smith, A. B. 1981. Implications of lantern morphology for the phylogeny of post-Palaeozoic echinoids. Palaeontology 24:779801.Google Scholar
Smith, A. B. 1994. Systematics and the fossil record: documenting evolutionary patterns. Blackwell Scientific, Oxford.CrossRefGoogle Scholar
Smith, A. B., and Anzalone, L. 2000. Loriolella, a key taxon for understanding the early evolution of irregular echinoids. Palaeontology 43:303324.CrossRefGoogle Scholar
Smith, A. B., and Jeffery, C. H. 2000. Echinoids of the Maastrichtian and Palaeocene: a key to world faunas. Special Papers in Palaeontology No. 63.Google Scholar
Smith, A. B., and Wright, C. W. 1999. British Cretaceous echinoids, Part 5. Holectypoida, Echinoneoida. Monograph of the Palaeontographical Society London. Publication No. 612:343390, Plates 115–129 (part of Vol. 153).Google Scholar
Stefanini, G. 1913. Probabile origine neotenica degli ambulacri apetali di Neolampas. Atti dell'Accademia Scientifica Veneto-Trentino-Istriana 3(6):3341.Google Scholar
Sumrall, C. D. 1997. The role of fossils in the phylogenetic reconstruction of Echinodermata. Paleontological Society Papers 3:267288.CrossRefGoogle Scholar
Suter, S. J. 1994a. Cladistic analysis of cassiduloid echinoids: trying to see the phylogeny for the trees. Biological Journal of the Linnean Society 53:3172.CrossRefGoogle Scholar
Suter, S. J. 1994b. Cladistic analysis of the living cassiduloids (Echinoidea), and the effects of character ordering and successive approximations weighting. Zoological Journal of the Linnean Society 112:363387.CrossRefGoogle Scholar
Swofford, D. L. 2000. PAUP. Phylogenetic Analysis Using Parsimony (and Other Methods), Version 4. Sinauer, Sunderland, Mass.Google Scholar
Wagner, P. J. 2000a. Exhaustion of morphologic character states among fossil taxa. Evolution 54:365386.Google ScholarPubMed
Wagner, P. J. 2000b. The quality of the fossil record and the accuracy of phylogenetic inferences about sampling and diversity. Systematic Biology 49:6586.CrossRefGoogle ScholarPubMed
Wills, M. A., Briggs, D. E. G., Fortey, R. A., and Wilkinson, M. 1995. The significance of fossils in understanding arthropod evolution. Verhandelung Deutsch Zoologische Gesammung 88:203215.Google Scholar