Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-21T00:48:41.491Z Has data issue: false hasContentIssue false

Relative taxonomic and ecologic stability in Devonian marine faunas of New York State: a test of coordinated stasis

Published online by Cambridge University Press:  08 April 2016

Linda C. Ivany
Affiliation:
Department of Earth Sciences, Syracuse University, Syracuse, New York 13244-1070. E-mail: lcivany@syr.edu
Carlton E. Brett
Affiliation:
Department of Geology, University of Cincinnati, Cincinnati, Ohio 45221-0013. E-mail: brettce@email.uc.edu
Heather L. B. Wall
Affiliation:
Department of Earth Sciences, Syracuse University, Syracuse, New York 13244
Patrick D. Wall
Affiliation:
Department of Earth Sciences, Syracuse University, Syracuse, New York 13244
John C. Handley
Affiliation:
Xerox Corporation, Webster, New York 14580

Abstract

The concept of coordinated stasis, manifest as a pattern of long intervals of concurrent taxonomic and ecologic persistence separated by comparatively abrupt periods of biotic change, has been challenged in recent studies that claim a lack of prolonged persistence of taxa and associations. A key problem has been the difficulty of distinguishing faunal change owing to localized, short-term environmental fluctuation or patchiness from that indicating regionally pervasive, long-term evolutionary or ecological change. Here, we use an extensive database from the Middle Devonian Hamilton Group of the Appalachian Basin to test for taxonomic and ecologic persistence within this ecological-evolutionary subunit, a succession of purported relative stability. Replicate samples collected from many localities and stratigraphic horizons over a wide geographic area allow us to address the effects of small-scale environmental variation and localized faunal patchiness while exploring basin-scale variation in faunal composition within and between the formations of the Hamilton Group.

Observed stratigraphic distributions of fossils are consistent with a scenario in which all taxa are present from bottom to top of the Hamilton Group, and absences result only from sampling failure. Although small-scale variation in faunal composition indeed does occur, there is no more variation among formations than occurs within them. Assemblages from different formations, whether they are defined by taxonomic or ecologic composition, are statistically indistinguishable according to several independent metrics, including ANOSIM and a maximum likelihood estimation that evaluates stratigraphic turnover using Bayesian “Information Criterion.” Simulated data sets indicate that test results are most consistent with species-level extinction of 2.6% per Myr within the Hamilton Group, far lower than the Givetian rate of 11.5% per Myr generic extinction derived from a global database. Such faunal persistence over the ~5.5 Myr encompassed by this unit is consistent with the pattern of coordinated stasis. Earlier studies showing greater amounts of temporal turnover in Hamilton Group faunas are likely influenced by their smaller geographic scale of analysis, suggesting that regional studies done elsewhere may yield similar results.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alroy, J., Marshall, C. R., Bambach, R. K., Bezusko, K., Foote, M., Fürsich, F. T., Hansen, T. A., Holland, S. M., Ivany, L. C., Jablonski, D., Jacobs, D. K., Jones, D. C., Kosnik, M. A., Lidgard, S., Low, S., Miller, A., Novack-Gottshall, P. M., Olszewski, T. D., Patzkowsky, M. E., Raup, D. M., Roy, K., Sepkoski, J. J. Jr., Sommers, M. G., Wagner, P. J., and Webber, A. 2001. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences USA 98:62616266.Google Scholar
Alroy, J., Aberhan, M., Bottjer, D. J., Foote, M., Fürsich, F. T., Harries, P. J., Hendy, A. J. W., Holland, S. M., Ivany, L. C., Kiessling, W., Kosnik, M. A., Marshall, C. R., McGowan, A. J., Miller, A. I., Olszewski, T. D., Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner, P. J., Bonuso, N., Borkow, P. S., Brenneis, B., Clapham, M. E., Fall, L. M., Ferguson, C. A., Hanson, V. L., Krug, A. Z., Layou, K. M., Leckey, E. H., Nuernberg, S., Powers, C. M., Sessa, J. A., Simpson, C., Tomašových, A., and Visaggi, C. C. 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97100.Google Scholar
Baird, G. C., and Brett, C. E. 1983. Regional variation and paleontology of two coral beds in the Middle Devonian Hamilton Group of western New York. Journal of Paleontology 57:417446.Google Scholar
Bambach, R. K. 1994. The null hypothesis for community stability and recurrence—environmental selection of adapted organisms. Geological Society of America Abstracts with Programs 26:519.Google Scholar
Bambach, R. K., Knoll, A. H., and Wang, S. C. 2004. Origination, extinction, and mass depletions of marine diversity. Paleobiology 30:522542.2.0.CO;2>CrossRefGoogle Scholar
Bennington, J B., and Bambach, R. K. 1996. Statistical testing for paleocommunity recurrence: are similar fossil assemblages ever the same? Palaeogeography, Palaeoclimatology, Palaeoecology 127:107133.Google Scholar
Bennington, J B., and Bonelli, J. R. Jr. 2005. The importance of sampling design in analyzing species abundance data from the fossil record. PaleoBios 25:19.Google Scholar
Bonelli, J. R. Jr., Brett, C. E., Miller, A. I., and Bennington, J B. 2006. Testing for faunal stability across a regional biotic transition: quantifying stasis and variation among recurring biofacies in the Middle Devonian Appalachian Basin. Paleobiology 32:2037.Google Scholar
Bonuso, N., Newton, C. R., Brower, J. C., and Ivany, L. C. 2002a. Does coordinated stasis yield taxonomic and ecologic stability? Middle Devonian Hamilton Group of central New York. Geology 30:10551058.Google Scholar
Bonuso, N., Newton, C. R., Brower, J. C., and Ivany, L. C. 2002b. Statistical testing of community patterns: uppermost Hamilton Group, Middle Devonian (New York State: USA). Palaeogeography, Palaeoclimatology, Palaeoecology 185:124.CrossRefGoogle Scholar
Boucot, A. J. 1975. Evolution and extinction rate controls. Elsevier, Amsterdam.Google Scholar
Boucot, A. J. 1996. Epilogue. Palaeogeography, Palaeoclimatology, Palaeoecology 127:339359.Google Scholar
Bray, J. R., and Curtis, J. T. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27:325349.Google Scholar
Brett, C. E., and Baird, G. C. 1995. Coordinated stasis and evolutionary ecology of Silurian to Middle Devonian faunas in the Appalachian Basin. Pp. 285315 in Erwin, D. H. and Anstey, R. L., eds. New approaches to speciation in the fossil record. Columbia University Press, New York.Google Scholar
Brett, C. E., and Baird, G. C. 1996. Middle Devonian sedimentary cycles and sequences in the northern Appalachian basin. In Witzke, B. J., Ludvigson, G. A., and Day, J., eds. Paleozoic sequence stratigraphy: views from the North American Craton. Geological Society of America Special Paper 306:213241.Google Scholar
Brett, C. E., Miller, K. B., and Baird, G. C. 1990. A temporal hierarchy of paleoecologic processes within a Middle Devonian epeiric sea. In Miller, W. III, ed. Paleocommunity temporal dynamics: the long-term development of multispecies assemblages. Paleontological Society Special Publication 5:178209.Google Scholar
Brett, C. E., Ivany, L. C., and Schopf, K. M. 1996. Coordinated stasis: an overview. Palaeogeography, Palaeoclimatology, Palaeoecology 127:120.Google Scholar
Brett, C. E., Bartholomew, A. J. and Baird, G. C. 2007. Biofacies recurrence in the Middle Devonian of New York State: an example with implications for habitat tracking. Palaios 22:306324.Google Scholar
Brett, C. E., Ivany, L. C., Bartholomew, A. J., DeSantis, M. K., and Baird, G. C. 2009. Devonian ecological-evolutionary subunits in the Appalachian Basin: a revision and a test of persistence and discreteness. In Koenigshof, P., ed. Devonian change: case studies in palaeogeography and palaeoecology. Geological Society of London Special Publication 314:736.Google Scholar
Burnham, K. P., and Anderson, D. R. 2002. Model selection and multimodel inference, 2d ed. Springer, New York.Google Scholar
Bush, A. M., Markey, J., and Marshall, C. R. 2004. Removing bias from diversity curves: the effects of spatially organized biodiversity on sampling-standardization. Paleobiology 30:666686.Google Scholar
Buzas, M. A., and Culver, S. J. 1994. Species pool and dynamics of marine paleocommunities. Science 264:14391441.Google Scholar
Buzas, M. A., and Culver, S. J. 1998. Assembly, disassembly, and balance in marine paleocommunities. Palaios 13:263275.Google Scholar
Clarke, K. R., and Warwick, R. M. 1994. Change in marine communities: an approach to statistical analysis and interpretation. Natural Environment Research Council, Bournemouth, U.K. Google Scholar
Chapman, M. G., and Underwood, A. J. 1999. Ecological patterns in multivariate assemblages: information and interpretation of negative values in ANOSIM tests. Marine Ecology Progress Series 180:257265.Google Scholar
Cleland, H. F. 1903. A study of the fauna of the Hamilton Formation of the Cayuga Lake section in central New York. U.S. Geological Survey Bulletin 206:1112.Google Scholar
Cooper, G.A. 1929. Stratigraphy of the Hamilton Group. . Yale University, New Haven, Conn. Google Scholar
DeSantis, M. K., Brett, C. E., and Ver Straeten, C. A. 2007. Persistent depositional sequences and bioevents in the Eifelian (Early Middle Devonian) of eastern Laurentia, North America: evidence for Kacak Events? In Becker, R. T. and Kirchgasser, W. T., eds. Devonian events and correlations. Geological Society of London Special Publication 278:83104.Google Scholar
DiMichele, W. A., and Philips, T. L. 1996. Clades, ecological amplitudes, and ecomorphs: phylogenetic effects and persistence of primitive plant communities in the Pennsylvanian-age tropical wetlands. Palaeogeography, Palaeoclimatology, Palaeoecology 127:83105.CrossRefGoogle Scholar
DiMichele, W. A., Behrensmeyer, A. K., Olszewski, T. D., Labandeira, C. C., Pandolfi, J. M., and Bobe, R. 2004. Long-term stasis in ecological assemblages: evidence from the fossil record. Annual Reviews of Ecology, Evolution, and Systematics 35:285322.CrossRefGoogle Scholar
Dynesius, M., and Jansson, R. 2000. Evolutionary consequences of changes in species' geographical distributions driven by Milankovitch climate oscillations. Proceedings of the National Academy of Sciences USA 97:91159120.CrossRefGoogle ScholarPubMed
Eldredge, N. 2003. The sloshing bucket: how the physical realm controls evolution. Pp. 332 in Crutchfield, J. P. and Schuster, P., eds. Evolutionary dynamics: exploring the interplay of selection, accident, neutrality, and function. Oxford University Press, Oxford.Google Scholar
Eldredge, N., and Gould, S. J. 1972. Punctuated equilibria: an alternative to phyletic gradualism. Pp. 82115 in Schopf, T. J. M., ed. Models in paleobiology. Freeman, Cooper, San Francisco.Google Scholar
Eldredge, N., Thompson, J. N., Brakefield, P. M., Gavrilets, S., Jablonski, D., Jackson, J. B. C., Lenski, R. E., Lieberman, B. S., McPeek, M. A., and Miller, W. III. 2005. The dynamics of evolutionary stasis. Paleobiology 31:133145.Google Scholar
Foote, M. 2003. Origination and extinction through the Phanerozoic: a new approach. Journal of Geology 111:125148.Google Scholar
Fraley, C., and Raftery, A. E. 2002. Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association 97:611631.Google Scholar
Fürsich, F. T., and Aberhan, M. 1990. Significance of time-averaging for paleocommunity analysis. Lethaia 23:143152.Google Scholar
Gaston, K. J. 2003. The structure and dynamics of geographic ranges. Oxford University Press, Oxford.Google Scholar
Gleason, H. A. 1926. The individualist concept of the plant association. Bulletin of the Torrey Botanical Club 53:726.CrossRefGoogle Scholar
Gould, S. J. 2002. The structure of evolutionary theory. Harvard University Press, Cambridge.Google Scholar
Handley, J., Sheets, H. D., and Mitchell, C. 2009. Probability models for stasis and change in paleocommunity structure. Palaios 24:638649.Google Scholar
Holland, S. M. 1995. The stratigraphic distribution of fossils. Paleobiology 21:92109.CrossRefGoogle Scholar
Holland, S. M. 1996. Recognizing artifactually generated coordinated stasis: implications of numerical models and strategies for field tests. Palaeogeography, Palaeoclimatology, Palaeoecology 127:147156.Google Scholar
Holland, S. M. 2000. The quality of the fossil record: a sequence stratigraphic perspective. In Erwin, D. H. and Wing, S. L., eds. Deep time: Paleobiology's perspective. Paleobiology 26(Suppl. to No. 4):148168.Google Scholar
Holland, S. M., and Patzkowsky, M. E. 2004. Ecosystem structure and stability: middle Upper Ordovician of central Kentucky, USA. Palaios 19:316331.Google Scholar
Holterhoff, P. F. 1996. Crinoid biofacies in upper Carboniferous cyclothems, midcontinent North America: faunal tracking and the role of regional processes in biofacies recurrence. Palaeogeography, Palaeoclimatology, Palaeoecology 127:4781.CrossRefGoogle Scholar
Hunt, G. 2008. Gradual or pulsed evolution: when should punctuational explanations be preferred? Paleobiology 34:360377.Google Scholar
Ivany, L. C. 1996. Coordinated stasis or coordinated turnover? Intrinsic versus extrinsic mechanisms for generating pattern. Palaeogeography, Palaeoclimatology, Palaeoecology 127:239256.Google Scholar
Ivany, L. C. 1999. So…now what? Thoughts and ruminations about coordinated stasis. Palaios 14:297300.Google Scholar
Jaccard, P. 1901. Bulletin de la Société Vaudoise des Sciences Naturelles 37:241272.Google Scholar
Jackson, J. B. C. 1992. Pleistocene perspectives on coral reef community structure. American Zoologist 32:719731.Google Scholar
Jackson, J. B. C. 1994. Community unity? Science 264:14121413.Google Scholar
Kenkel, N. C., and Orlóci, L. 1986. Applying metric and nonmetric multidimensional scaling to ecological studies: some new results. Ecology 67:919928.Google Scholar
Lieberman, B. S., Brett, C. E., and Eldredge, N. 1995. A study of stasis and change in two species lineages from the Middle Devonian of New York State. Paleobiology 21:1527.Google Scholar
Lieberman, B. S., Miller, W. M. III, and Eldredge, N. 2007. Paleontological patterns, macroecological dynamics and the evolutionary process. Evolutionary Biology 34:2848.CrossRefGoogle Scholar
McGhee, G. R. 1996. The Late Devonian mass extinction: the Frasnian/Famennian crisis. Columbia University Press, New York.Google Scholar
McIntosh, G. C., and Schreiber, R. L. 1971. Morphology and taxonomy of the Middle Devonian crinoid Ancyrocrinus bulbosus Hall, 1862. Contributions to the Museum of Paleontology, University of Michigan 23:381403.Google Scholar
McKinney, M. L., Lockwood, J. L., and Frederick, D. R. 1996. Does ecosystem and evolutionary stability include rare species? Palaeogeography, Palaeoclimatology, Palaeoecology 127:191207.Google Scholar
Miller, A. I. 1997. Coordinated stasis or coincident relative stability? Paleobiology 23:155164.Google Scholar
Miller, W. III. 1996. Ecology of coordinated stasis. Palaeogeography, Palaeoclimatology, Palaeoecology 127:177190.CrossRefGoogle Scholar
Morris, P. J., Ivany, L. C., Schopf, K. M., and Brett, C. E. 1995. The challenge of paleoecological stasis: reassessing sources of evolutionary stability. Proceedings of the National Academy of Sciences USA 92:1126911273.Google Scholar
Mouchet, M., Guilhaumon, F., Villéger, S., Mason, N. W. H., Tomasini, J.-A., and Mouillot, D. 2008. Towards a consensus for calculating dendrogram-based functional diversity indices. Oikos 117:794800.Google Scholar
Olson, E. C. 1952. The evolution of a Permian vertebrate chronofauna. Evolution 6:181196.Google Scholar
Olszewski, T. D., and Patzkowsky, M. E. 2001. Measuring recurrence of marine biotic gradients: a case study from the Pennsylvanian-Permian mid-continent. Palaios 16:444460.Google Scholar
Pandolfi, J. M. 1996. Limited membership in Pleistocene reef coral assemblages from the Huon Peninsula, Papua, New Guinea: constancy during global change. Paleobiology 22:152176.Google Scholar
Pandolfi, J. M. 2002. Coral community dynamics at multiple scales. Coral Reefs 21:1323.CrossRefGoogle Scholar
Pandolfi, J. M., and Jackson, J. B. C. 2006. Ecological persistence interrupted in Caribbean coral reefs. Ecology Letters 9:818826.Google Scholar
Patzkowsky, M. E. 1999. A new agenda for evolutionary paleoecology: or would you in the background please step forward. Palaios 14:195197.Google Scholar
Patzkowsky, M. E., and Holland, S. M. 1997. Diversity dynamics in Middle and Upper Ordovician articulate brachiopods: implications for long-term stability of marine ecosystems. Paleobiology 23:420443.Google Scholar
Peters, S. E. 2005. Geologic constraints on the macroevolutionary history of marine animals. Proceedings of the National Academy of Sciences USA 102:12,32612,331.Google Scholar
Pfefferkorn, H. W., Gastaldo, R. A., and DiMichele, W. A. 2000. Ecological stability during the late Paleozoic cold interval. In Gastaldo, R. A. and DiMichele, W. A., eds. Phanerozoic terrestrial ecosystems. Paleontological Society Papers 6:6378. Paleontological Society, Knoxville, Tenn. Google Scholar
Roy, K., and Wagner, P. J. 1995. Communities in the fossil record: coordination or coincidence? American Paleontologist 3:34.Google Scholar
Scarponi, D., and Kowalewski, M. 2004. Stratigraphic paleoecology: bathymetric signatures and sequence overprint of mollusk associations from late Quaternary sequences of the Po Plain, Italy. Geology 32:989992.Google Scholar
Schopf, K. M., and Ivany, L. C. 1998. Scaling the ecosystem: a hierarchical view of stasis and change. Pp. 187211 in McKinney, M. L. and Drake, J. A., eds. Biodiversity dynamics: turnover of populations, taxa, and communities. Columbia University Press, New York.Google Scholar
Sheldon, P. R. 1996. Plus ça change—a model for stasis and evolution in different environments. Palaeogeography, Palaeoclimatology, Palaeoecology 127:209227.Google Scholar
Stanton, R. J., and Dodd, J. R. 1997. Lack of stasis in late Cenozoic marine faunas and communities, central California. Lethaia 30:239256.CrossRefGoogle Scholar
Stephens, P. A., Buskirk, S. W., and Martinez del Rio, C. 2007. Inference in ecology and evolution. Trends in Ecology and Evolution 22:192197.Google Scholar
Tang, C. M., and Bottjer, D. J. 1996. Long-term faunal stasis without evolutionary coordination: Jurassic benthic marine paleocommunities, Western Interior, United States. Geology 24:815818.Google Scholar
Visaggi, C. C. 2004. Testing for patterns of faunal persistence in the early Oligocene Byram Formation of Mississippi. . Syracuse University, Syracuse, N.Y. Google Scholar
Vrba, E. S. 1985. Environment and evolution: alternative causes of the temporal distribution of evolutionary events. South African Journal of Science 81:229236.Google Scholar
Wagner, P. J., Kosnik, M. A., and Lidgard, S. 2006. Abundance distributions imply elevated complexity of post-Paleozoic marine ecosystems. Science 314:12891292.Google Scholar
Zambito, J. IV, Mitchell, C. E., and Sheets, H. D. 2008. A comparison of sampling and statistical techniques for analyzing bulk-sampled biofacies composition. Palaios 23:313321.CrossRefGoogle Scholar