Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-08-02T14:33:23.275Z Has data issue: false hasContentIssue false

Accounting for the effects of biological variability and temporal autocorrelation in assessing the preservation of species abundance

Published online by Cambridge University Press:  08 April 2016

Adam Tomaŝových
Affiliation:
Department of Geophysical Sciences, University of Chicago, Chicago, Illinois 60637 Geological Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 84005 Bratislava, Slovakia. E-mail: tomasovych@uchicago.edu
Susan M. Kidwell
Affiliation:
University of Chicago, Department of Geophysical Sciences, Chicago, Illinois 60637. E-mail: skidwell@uchicago.edu

Abstract

Quantifying the effects of taphonomic processes on species abundances in time-averaged death assemblages (DAs) is pivotal for paleoecological inference. However, fidelity estimates based on conventional “live-dead” comparisons are fundamentally ambiguous: (1) data on living assemblages (LAs) are based on a very short period of sampling and thus do not account for biological variability in the LA, (2) LAs are sampled at the same time as the DA and thus do not necessarily reflect past LAs that contributed to the DA, (3) compositions of LAs and DAs can be autocorrelated owing to shared cohorts, and (4) fidelity estimates are cross-scale estimates because DAs are time-averaged and LAs are not. Some portion of raw (total) live-dead (LD) variation in species composition thus arises from incomplete sampling of LAs and from biological temporal variation among LAs (together = premortem component of LD variation), as contrasted with new variation created by interspecific variation in population turnover and preservation rates and by the time-averaging of skeletal input (together = postmortem component of LD variation). To tackle these problems, we introduce a modified test for homogeneity of multivariate dispersions (HMD) in order to (1) account for temporal autocorrelation in composition between LAs and DAs and (2) decompose total LD compositional variation into premortem and postmortem components, and we use simulations to evaluate the contribution of within-habitat time-averaging on the postmortem component. Applying this approach to 31 marine molluscan data sets, each consisting of spatial replicates of LAs and DAs in a single habitat, we find that total LD variation is driven largely by variation among LAs. However, genuinely postmortem processes have significant effects on composition in 25–65% of data sets (depending on the metric) when the effects of temporal autocorrelation are taken into account using HMD. Had we ignored the effects of autocorrelation, the effects of postmortem processes would have been negligible, inflating the similarity between LAs and DAs. Simulations show that within-habitat time-averaging does not increase total LD variation to a large degree—it increases total LD variation mainly via increasing species richness, and decreases total LD variation by reducing dispersion among DAs. The postmortem component of LD variation thus arises from differential turnover and preservation and multi-habitat time-averaging. Moreover, postmortem processes have less effect on the compositions of DAs in habitats characterized by high variability among LAs than they have on DAs in temporally stable habitats, a previously unrecognized first-order factor in estimating postmortem sources of compositional variation in DAs.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alin, S. R., and Cohen, A. S. 2004. The live, the dead, and the very dead: taphonomic calibration of the recent record of paleoecological change in Lake Tanganyika, East Africa. Paleobiology 30:4481.2.0.CO;2>CrossRefGoogle Scholar
Aller, J. Y. 1995. Molluscan death assemblages on the Amazon shelf—implications for physical and biological controls on benthic populations. Palaeogeography, Palaeoclimatology, Palaeoecology 118:181212.Google Scholar
Aller, J. Y., and Stupakoff, I. 1996. The distribution and seasonal characteristics of benthic communities on the Amazon shelf as indicators of physical processes. Continental Shelf Research 16:717751.Google Scholar
Anderson, M. J. 2001a. Permutation tests for univariate or multivariate analysis of variance and regression. Canadian Journal of Fisheries and Aquatic Sciences 58:626639.CrossRefGoogle Scholar
Anderson, M. J. 2001b. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26:3246.Google Scholar
Anderson, M. J. 2006. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62:245253.Google Scholar
Anderson, M. J., Ellingsen, K. E., and McArdle, B. H. 2006. Multivariate dispersion as a measure of beta diversity. Ecology Letters 9:683693.Google Scholar
Behrensmeyer, A. K. 1982. Time resolution in fluvial vertebrate assemblages. Paleobiology 8:211227.CrossRefGoogle Scholar
Behrensmeyer, A. K., and Boaz, D. E. Dechant 1980. The recent bones of Amboseli National Park, Kenya, in relation to East African paleoecology. Pp. 7293 in Behrensmeyer, A. K. and Hill, A., eds. Fossils in the making. University of Chicago Press, Chicago.Google Scholar
Bennington, J. B. 2003. Transcending patchiness in the comparative analysis of paleocommunities: a test case from the Upper Cretaceous of New Jersey. Palaios 18:2233.Google Scholar
Berkeley, A., Perry, C. T., and Smithers, S. G. 2009. Taphonomic signatures and patterns of test degradation on tropical, intertidal benthic foraminifera. Marine Micropaleontology 73:148163.CrossRefGoogle Scholar
Bosence, D. W. J. 1979. Live and dead faunas from coralline algal gravels, Co. Galway. Paleontology 22:449478.Google Scholar
Bush, A. M., and Bambach, R. K. 2004. Did alpha diversity increase during the Phanerozoic? Lifting the veils of taphonomic, latitudinal, and environmental biases. Journal of Geology 112:625642.CrossRefGoogle Scholar
Carroll, M., Kowalewski, M., Simões, M. G., and Goodfriend, G. A. 2003. Quantitative estimates of time-averaging in terebratulid brachiopod shell accumulations from a modern tropical shelf. Paleobiology 29:381402.Google Scholar
Carthew, R., and Bosence, D. 1986. Community preservation in Recent shell-gravels, English Channel. Paleontology 29:243268.Google Scholar
Chao, A., Chazdon, R. L., Colwell, R. K., and Shen, T.-J. 2005. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecology Letters 8:148159.Google Scholar
Cherns, L., Wheeley, J. R., and Wright, V. P. 2008. Taphonomic windows and molluscan preservation. Palaeogeography, Palaeoclimatology, Palaeoecology 270:220229.CrossRefGoogle Scholar
Chisholm, R. A., and Lichstein, J. W. 2009. Linking dispersal, immigration and scale in the neutral theory of biodiversity. Ecology Letters 12:13851393.CrossRefGoogle ScholarPubMed
Clarke, K. R. 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18:117143.Google Scholar
Connell, J. H., Hughes, T. P., and Wallace, C. C. 1997. A 30-year study of coral abundance, recruitment, and disturbance at several scales in space and time. Ecological Monographs 67:461488.CrossRefGoogle Scholar
Cowen, R. K., and Sponaugle, S. 2009. Larval dispersal and marine population connectivity. Annual Reviews of Marine Science 1:443466.Google Scholar
Craig, G. Y., and Oertel, G. 1966. Deterministic models of living and fossil populations of animals. Quarterly Journal of the Geological Society, London 122:315355.CrossRefGoogle Scholar
Cummins, H., Powell, E. N., Stanton, R. J. Jr., and Staff, G. 1986. The rate of taphonomic loss in modern benthic habitats: how much of the potentially preservable community is preserved? Palaeogeography, Palaeoclimatology, Palaeoecology 52:291320.Google Scholar
Edinger, E. N., Pandolfi, J. M., and Kelley, R. A. 2001. Community structure of Quaternary coral reefs compared with Recent life and death assemblages. Paleobiology 27:669694.Google Scholar
Ekdale, A. A. 1972. Ecology and paleoecology of marine invertebrate communities in calcareous substrates, northeast Quintana Roo, Mexico. . Rice University, Houston.Google Scholar
Ekdale, A. A. 1977. Quantitative paleoecological aspects of modern marine mollusk distribution, northeast Yucatan coast, Mexico. In Frost, S. H., Weiss, M. P., and Saunders, J. B., eds. Reefs and related carbonates: ecology and sedimentology. AAPG Studies in Geology 4:195207.Google Scholar
Etienne, R. S. 2007. A neutral sampling formula for multiple samples and an “exact” test of neutrality. Ecology Letters 10:608618.Google Scholar
Etienne, R. S., and Olff, H. 2004. A novel genealogical approach to neutral biodiversity theory. Ecology Letters 7:170175.Google Scholar
Etienne, R. S., Apol, M. E. F., Olff, H., and Weissing, F. J. 2007. Modes of speciation and the neutral theory of biodiversity. Oikos 116:241258.Google Scholar
Faith, D. P., Minchin, P. R., and Belbin, L. 1987. Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69:5768.CrossRefGoogle Scholar
Ferguson, C. A. 2008. Nutrient pollution and the molluscan death record: use of mollusc shells to diagnose environmental change. Journal of Coastal Research 24:250259.CrossRefGoogle Scholar
Ferguson, C. A., and Miller, A. I. 2007. A sea change in Smuggler's Cove? Detection of decadal-scale compositional transitions in the subfossil record. Palaeogeography, Palaeoclimatology, Palaeoecology 254:418429.Google Scholar
Ferson, S., and Ginzburg, L. R. 1996. Different methods are needed to propagate ignorance and variability. Reliability Engineering and System Safety 54:133144.Google Scholar
Flessa, K. W., and Kowalewski, M. 1994. Shell survival and time-averaging in nearshore and shelf environments: estimates from the radiocarbon literature. Lethaia 27:153165.CrossRefGoogle Scholar
Flessa, K. W., Cutler, A. H., and Meldahl, K. H. 1993. Time and taphonomy: quantitative estimates of time-averaging and stratigraphic disorder in a shallow marine habitat. Paleobiology 19:266286.Google Scholar
Fürsich, F. T. 1978. Influence of faunal condensation and mixing on preservation of fossil benthic communities. Lethaia 11:243250.CrossRefGoogle Scholar
Fürsich, F. T., and Aberhan, M. 1990. Significance of time-averaging for paleocommunity analysis. Lethaia 23:143152.Google Scholar
Greenstein, B. J., and Pandolfi, J. H. 1997. Preservation of community structure in modern reef coral life and death assemblages of the Florida Keys: implications for the Quaternary fossil record of coral reefs. Bulletin of Marine Science 61:431452.Google Scholar
Halley, J. M. 1996. Ecology, evolution and 1/f noise. Trends in Ecology and Evolution 11:3337.CrossRefGoogle Scholar
Hassan, G. S., Espinosa, M. A., and Isla, F. I. 2007. Dead diatom assemblages in surface sediments from a low impacted estuary: the Quequen Salado river, Argentina. Hydrobiologia 579:257270.CrossRefGoogle Scholar
Heck, K. L. Jr., van Belle, G., and Simberloff, D. 1975. Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology 56:14591461.CrossRefGoogle Scholar
Hilborn, R., and Mangel, M. 1997. The ecological detective: confronting models with data. Princeton University Press, Princeton, N.J. Google Scholar
Hippensteel, S. P., Martin, R. E., Nikitina, D., and Pizzuto, J. E. 2002. Interannual variation of marsh foraminiferal assemblages (Bombay Hook National Wildlife Refuge, Smyrna, DE): do foraminiferal assemblages have a memory? Journal of Foraminiferal Research 32:97109.CrossRefGoogle Scholar
Horn, H. S. 1966. Measurement of “overlap” in comparative ecological studies. American Naturalist 100:419424.Google Scholar
Hubbell, S. P. 2001. The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton, N.J. Google Scholar
Hurlbert, S. H. 1971. The non-concept of species diversity: a critique and alternative parameters. Ecology 52:577–86.Google Scholar
Jackson, S. T., and Kearsley, J. B. 1998. Quantitative representation of local forest composition in forest-floor pollen assemblages. Journal of Ecology 86:474490.CrossRefGoogle Scholar
James, N. P., Bone, Y., and Kyser, T. K. 2005. Where has all the aragonite gone? Mineralogy of Holocene neritic cool-water carbonates, southern Australia. Journal of Sedimentary Research 75:454463.Google Scholar
Johnson, R. G. 1960. Models and methods for the analysis of the mode of formation of fossil assemblages. Geological Society of America Bulletin 71:10751086.Google Scholar
Johnson, R. G. 1965. Pelecypod death assemblages in Tomales Bay, California. Journal of Paleontology 39:8085.Google Scholar
Jost, L. 2006. Entropy and diversity. Oikos 113:363375.Google Scholar
Kidwell, S. M. 2001. Preservation of species abundance in marine death assemblages. Science 294:10911094.Google Scholar
Kidwell, S. M. 2002. Time-averaged molluscan death assemblages: palimpsests of richness, snapshots of abundances. Geology 30:803806.Google Scholar
Kidwell, S. M. 2007. Discordance between living and death assemblages as evidence for anthropogenic ecological change. Proceedings of the National Academy of Sciences USA 104:1770117706.CrossRefGoogle ScholarPubMed
Kidwell, S. M. 2008. Ecological fidelity of open marine molluscan death assemblages: effects of post-mortem transportation, shelf health, and taphonomic inertia. Lethaia 41:199217.Google Scholar
Kidwell, S. M., and Bosence, D. W. J. 1991. Taphonomy and time-averaging of marine shelly faunas. Pp. 115209 in Allison, P. A. and Briggs, D. E. G., eds. Taphonomy: releasing the data locked in the fossil record. Plenum, New York.CrossRefGoogle Scholar
Kidwell, S. M., and Rothfus, T. A. 2010. The living, the dead, and the expected dead: variation in life span yields little bias of proportional abundances in bivalve death assemblages. Paleobiology 36:615640.Google Scholar
Kidwell, S. M., Best, M. M. R., and Kaufmann, D. S. 2005. Taphonomic trade-offs in tropical marine death assemblages: differential time averaging, shell loss, and probable bias in siliciclastic vs. carbonate facies. Geology 33:729732.Google Scholar
Kinlan, B. P., and Gaines, S. D. 2003. Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84:20072020.Google Scholar
Kinlan, B. P., Gaines, S. D., and Lester, S. E. 2005. Propagule dispersal and the scales of marine community process. Diversity and Distributions 11:139148.CrossRefGoogle Scholar
Kim, S.-H., and Yi, S. V. 2007. Understanding relationship between sequence and functional evolution in yeast proteins. Genetica 131:151156.Google Scholar
Kosnik, M. A., Hua, Q., Jacobsen, G. E., Kaufman, D. S., and Wüst, R. A. 2007. Sediment mixing and stratigraphic disorder revealed by the age-structure of Tellina shells in Great Barrier Reef sediment. Geology 35:811814.Google Scholar
Kosnik, M. A., Hua, Q., Kaufman, D. S., and Wüst, R. A. 2009. Taphonomic bias and time-averaging in tropical molluscan death assemblages: differential shell half-lives in Great Barrier Reef sediment. Paleobiology 35:565586.CrossRefGoogle Scholar
Kowalewski, M., and Bambach, R. K. 2003. The limits of paleontological resolution. Pp. 148 in Harries, P. J., ed. High-resolution approaches in stratigraphic paleontology. Plenum Press/Kluwer Academic, New York.Google Scholar
Kowalewski, M., Goodfriend, G. A., and Flessa, K. W. 1998. High-resolution estimates of temporal mixing within shell beds: the evils and virtues of time-averaging. Paleobiology 24:287304.Google Scholar
Kowalewski, M., Serrano, G. E. Avila, Flessa, K. W., and Goodfriend, G. A. 2000. Dead delta's former productivity: two trillion shells at the mouth of the Colorado River. Geology 28:10591062.Google Scholar
Kowalewski, M., Carroll, M., Casazza, L., Gupta, N., Hannisdal, B., Hendy, A., Krause, R. A. Jr., LaBarbera, M., Lazo, D. G., Messina, C., Puchalski, S., Rothfus, T. A., Sälgeback, J., Stempien, J., Terry, R. C., and Tomašových, A. 2003. Quantitative fidelity of brachiopod-mollusk assemblages from modern subtidal environments of San Juan Islands, USA. Journal of Taphonomy 1:4365.Google Scholar
Krause, R. A. Jr., Barbour, S. L., Kowalewski, M., Kaufman, D. S., Romanek, C. S., Simões, M. G., and Wehmiller, J. F. 2010. Quantitative estimates and modeling of time averaging in bivalve and brachiopod shell accumulations. Paleobiology 36:428452.Google Scholar
Lande, R. 1993. Risk of population extinction from demographic and environmental stochasticity and random catastrophes. American Naturalist 142:911927.CrossRefGoogle ScholarPubMed
Lande, R., Engen, S., Sæther, B.-E., Filli, F., Matthysen, E., and Weimerskirch, H. 2002. Estimating density dependence from population time series using demographic theory and life-history data. American Naturalist 159:321337.CrossRefGoogle ScholarPubMed
Legendre, P., and Gallagher, E. D. 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129:271280.Google Scholar
Linse, K. 1997. Die Verbreitung epibenthischer Mollusken im chilenischen Beagle-Kanal. Berichte zur Polarforschung 228:1131.Google Scholar
Linse, K. 1999. Abundance and diversity of Mollusca in the Beagle Channel. Scientia Marina 63(Suppl. 1):391397.Google Scholar
Lockwood, R., and Chastant, L. R. 2006. Quantifying taphonomic bias of compositional fidelity, species richness, and rank abundance in molluscan death assemblages from the upper Chesapeake Bay. Palaios 21:376383.Google Scholar
Martin, R. E. 2005. Taphonomic analysis and alternative enumeration procedures resolve multidecadal-to-centennial scale sea-level and paleoclimate signals in microtidal marshes (Delaware, United States of America). Environmental Micropaleontology, Microbiology and Meiobenthology 2:68101.Google Scholar
Martin, R. E., Wehmiller, J. F., Harris, M. S., and Liddell, W. D. 1996. Comparative taphonomy of bivalves and foraminifera from Holocene tidal flat sediments, Bahia la Choya, Sonora, Mexico (Northern Gulf of California): taphonomic grades and temporal resolution. Paleobiology 22:8090.Google Scholar
Martin, R. E., Hippensteel, S. P., Nikitina, D., and Pizzuto, J. E. 2002. Artificial time-averaging of marsh foraminiferal assemblages: linking the temporal scales of ecology and paleoecology. Paleobiology 28:263277.Google Scholar
McArdle, B. H., and Blackwell, R. G. 1989. Measurement of density variability in the bivalve Chione stutchburyi using spatial autocorrelation. Marine Ecology Progress Series 52:245252.Google Scholar
Meldahl, K. E., Flessa, K. W., and Cutler, A. H. 1997. Time-averaging and postmortem skeletal survival in benthic fossil assemblages: quantitative comparisons among Holocene environments. Paleobiology 23:207229.Google Scholar
Miller, A. I. 1988. Spatial resolution in subfossil molluscan remains: implications for paleobiological analyses. Paleobiology 14:91103.Google Scholar
Moore, J. R., Norman, D. B., and Upchurch, P. 2007. Assessing relative abundances in fossil assemblages. Palaeogeography, Palaeoclimatology, Palaeoecology 253:317322.Google Scholar
Murray, J. W., and Pudsey, C. J. 2004. Living (stained) and dead foraminifera from the newly ice-free Larsen Ice Shelf, Weddell Sea, Antarctica: ecology and taphonomy. Marine Micropaleontology 53:6781.Google Scholar
Olszewski, T. D. 2004. Modeling the influence of taphonomic destruction, reworking, and burial on time-averaging in fossil accumulations. Palaios 19:3950.Google Scholar
Olszewski, T. D., and Kidwell, S. M. 2007. The preservational fidelity of evenness in molluscan death assemblages. Paleobiology 33:123.CrossRefGoogle Scholar
Pandolfi, J. M., and Greenstein, B. J. 1997. Preservation of community structure in death assemblages of deep-water Caribbean reef corals. Limnology and Oceanography 42:15051516.Google Scholar
Pandolfi, J. M., and Minchin, P. R. 1996. A comparison of taxonomic composition and diversity between reef coral life and death assemblages in Madang Lagoon, Papua New Guinea. Palaeogeography, Palaeoclimatology, Palaeoecology 119:321341.Google Scholar
Peterson, C. H. 1976. Relative abundances of living and dead molluscs in two Californian lagoons. Lethaia 9:137148.Google Scholar
Peterson, C. H. 1977. The paleoecological significance of undetected short-term temporal variability. Journal of Paleontology 51:976981.Google Scholar
Pike, J., Allen, C. S., Leventer, A., Stickley, C. E., and Pudsey, C. J. 2008. Comparison of contemporary and fossil diatom assemblages from the western Antarctic Peninsula shelf. Marine Micropaleontology 67:247287.Google Scholar
Powell, E. N., Stanton, R. J. Jr., Davies, D., and Logan, A. 1986. Effect of a large larval settlement and catastrophic mortality on the ecological record of the community in the death assemblage. Estuarine, Coastal and Shelf Science 23:513525.Google Scholar
R Development Core Team. 2009. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. www.R-project.org Google Scholar
Reza, M. M. Reguero 1994. Estructura de la comunidad de moluscos en lagunas costeras de Veracruz y Tabasco, Mexico. . Ciudad Universitaria, Universidad Nacional Autónoma de México, Mexico City.Google Scholar
Rodland, D. L., Kowalewski, M., Carroll, M., and Simões, M. G. 2006. The temporal resolution of epibiont assemblages: are they ecological snapshots or overexposures? Journal of Geology 114:313324.CrossRefGoogle Scholar
Rosindell, J., Cornell, S. J., Hubbell, S. P., and Etienne, R. S. 2010. Protracted speciation revitalizes the neutral theory of biodiversity. Ecology Letters 13:716727.Google Scholar
Sadler, P. M. 1993. Models of time-averaging as a maturation process: how soon do sedimentary structures escape reworking? In Kidwell, S. M. and Behrensmeyer, A. K., eds. Taphonomic approaches to time resolution in fossil assemblages. Short Courses in Paleontology 6:188209. Paleontological Society, Knoxville, Tenn. Google Scholar
Schwager, M., Johst, K., and Jeltsch, F. 2006. Does red noise increase or decrease extinction risk? Single extreme events versus series of unfavorable conditions. American Naturalist 167:879888.Google Scholar
Shipley, B. 2000. Cause and correlation in biology. Cambridge University Press, Cambridge.Google Scholar
Simms, H. J., and Cassara, J. A. 2009. The taphonomic fidelity of seed size in fossil assemblages: a live-dead case study. Palaios 24:387393.Google Scholar
Smith, J. E. 1932. The shell gravel deposits, and the infauna of the Eddystone Grounds. Journal of the Marine Biological Association of the U.K. 13:164224.Google Scholar
Staff, G. M., and Powell, E. N. 1988. The palaeoecological significance of diversity: the effect of time averaging and differential preservation on macroinvertebrate species richness in death assemblages. Palaeogeography, Palaeoclimatology, Palaeoecology 63:7389.Google Scholar
Swearer, S. E., Shima, J. S., Hellberg, M. E., Thorrold, S. R., Jones, G. P., Robertson, D. R., Morgan, S. G., Selkoe, K. A., Ruiz, G. M., and Warner, R. R. 2002. Evidence of self-recruitment in demersal marine populations. Bulletin of Marine Science 70(Suppl.):251271.Google Scholar
Terry, R. C. 2008. Modeling the effects of predation, prey cycling, and time averaging on relative abundance in raptor-generated small-mammal death assemblages. Palaios 23:402410.Google Scholar
Terry, R. C. 2010a. On raptors and rodents: testing the ecological fidelity and spatiotemporal resolution of cave death assemblages. Paleobiology 36:137160.Google Scholar
Terry, R. C. 2010b. The dead do not lie: using skeletal remains for rapid assessment of historical small-mammal community baselines. Proceedings of the Royal Society of London B 277:11931201.Google Scholar
Tomašových, A. 2004. Postmortem durability and population dynamics affecting the fidelity of size-frequency distributions. Palaios 19:477496.Google Scholar
Tomašových, A., and Kidwell, S. M. 2009a. Fidelity of variation in species composition and diversity partitioning by death assemblages: time-averaging transfers diversity from beta to alpha levels. Paleobiology 35:122148.Google Scholar
Tomašových, A., and Kidwell, S. M. 2009b. Preservation of spatial and environmental gradients by death assemblages. Paleobiology 35:119145.Google Scholar
Tomašových, A., and Kidwell, S. M. 2010a. The effects of temporal resolution on species turnover and on testing metacommunity models. American Naturalist 175:587606.CrossRefGoogle ScholarPubMed
Tomašových, A., and Kidwell, S. M. 2010b. Predicting the effects of increasing temporal scale on species composition, diversity, and rank-abundance distributions. Paleobiology 36:672695.CrossRefGoogle Scholar
Tomašových, A., and Rothfus, T. A. 2005. Differential taphonomy of modern brachiopods (San Juan Islands, Washington State): effect of intrinsic factors on damage and community-level abundance. Lethaia 38:271292.Google Scholar
Tsuchi, R. 1959. Molluscs and shell remains from the coast of Chihama in the Sea of Enshu, the Pacific side of central Japan. Reports of Liberal Arts and Science Faculty, Shizuoka University (Natural Science) 2:143152.Google Scholar
Van Valen, L. 1964. Relative abundance of species in some fossil mammal faunas. American Naturalist 98:109116.Google Scholar
Warme, J. E. 1971. Paleoecological aspects of a modern coastal lagoon. University of California Publications in Geological Sciences 87:1110.Google Scholar
Warme, J. E., Ekdale, A. A., Ekdale, S. F., and Peterson, C. H. 1976. Raw material of the fossil record. Pp. 143169 in Scott, R. W. and West, R. R., eds. Structure and classification of paleocommunities. Dowden, Hutchinson and Ross, Stroudsburg, Penn. Google Scholar
Western, D., and Behrensmeyer, A. K. 2009. Bone assemblages track animal community structure over 40 years in an African savanna ecosystem. Science 324:10611064.Google Scholar
White, W. A., Calnan, T. R., Morton, R. A., Kimble, R. S., Littleton, T. G., McGowen, J. H., and Nance, H. S. 1983. Submerged lands of Texas, Corpus Christi area: sediments, geochemistry, benthic macroinvertebrates, and associated wetlands. Bureau of Economic Geology, University of Texas, Austin.Google Scholar
White, W. A., Calnan, T. R., Morton, R. A., Kimble, R. S., Littleton, T. G., McGowen, J. H., Nance, H. S., and Schmedes, K. E. 1985. Submerged lands of Texas, Galveston-Houston area: sediments, geochemistry, benthic macroinvertebrates, and associated wetlands. Bureau of Economic Geology, University of Texas, Austin.Google Scholar
Wright, P., Cherns, L., and Hodges, P. 2003. Missing molluscs: field testing taphonomic loss in the Mesozoic through early large-scale aragonite dissolution. Geology 31:211214.Google Scholar
Yanes, A., Kowalewski, M., Ortiz, J. E., Castillo, C., De Torres, T., and de la Nuez, J. 2007. Scale and structure of time-averaging (age mixing) in terrestrial gastropod assemblages from Quaternary eolian deposits of the eastern Canary Islands. Palaeogeography, Palaeoclimatology, Palaeoecology 251:283299.Google Scholar
Yordanova, E. K., and Hohenegger, J. 2002. Taphonomy of larger foraminifera: relationships between living individuals and empty tests on flat reef slopes (Sesoko Island, Japan). Facies 46:169203.Google Scholar
Zuschin, M., and Oliver, P. G. 2003. Fidelity of molluscan life and death assemblages on sublittoral hard substrata around granitic islands of the Seychelles. Lethaia 36:133150.Google Scholar
Zuschin, M., Hohenegger, J., and Steininger, F. F. 2000. A comparison of living and dead molluscs on coral reef associated hard substrata in the northern Red Sea—implications for the fossil record. Palaeogeography, Palaeoclimatology, Palaeoecology 159:169190.Google Scholar
Supplementary material: File

Tomaŝových and Kidwell supplementary material

Supplementary Material

Download Tomaŝových and Kidwell supplementary material(File)
File 608.8 KB