Hostname: page-component-5c6d5d7d68-wbk2r Total loading time: 0 Render date: 2024-08-08T01:48:15.654Z Has data issue: false hasContentIssue false

Body size and growth patterns in the therocephalian Moschorhinus kitchingi (Therapsida: Eutheriodontia) before and after the end-Permian extinction in South Africa

Published online by Cambridge University Press:  01 March 2013

Adam K. Huttenlocker
Affiliation:
Department of Biology, University of Washington, Seattle, Washington 98195, U.S.A. E-mail: huttenla@u.washington.edu. Corresponding author
Jennifer Botha-Brink
Affiliation:
Department of Karoo Palaeontology, National Museum and Department of Zoology and Entomology, University of the Free State, Bloemfontein 9300, South Africa. E-mail: jbotha@nasmus.co.za

Abstract

The continuous fossil record of therocephalian therapsids (Eutheriodontia) across the Permo-Triassic boundary and their differential survivorship of the end-Permian extinction offer an exceptional deep-time perspective on vertebrate life-history evolution during episodes of large-scale ecological perturbation. To examine potential impacts of the extinction on body size evolution (e.g., “Lilliput” effects) and growth patterns, we investigated cranial sizes and limb bone histology in the therocephalian Moschorhinus kitchingi both before and after the end-Permian extinction, facilitated by analysis of thin-sections of 23 limb bones from an ontogenetic sample of ten individuals across the Permo-Triassic boundary. In general, early subadult Moschorhinus displayed propodial cortices with extensive woven- and parallel-fibered bone (PFB) with dense radial and reticular vascularization and a moderately thickened bone wall with few growth marks. The outer cortex of propodials and epipodials showed a transition to PFB and lamellar bone with longitudinally oriented canals in individuals interpreted as late subadults or adults (>80% largest size). Most elements displayed several (3+) growth marks, though growth marks were more faithfully recorded in the epipodials of Permian individuals. Pearson product-moment correlation tests were performed to examine the relationship between size and robusticity on growth proxies (% cortical vascularity, mean primary osteon diameter), but variation in histomorphology could not be explained by size alone. Variation in body size may be affected by differences in juvenile growth rate and duration, which are highly variable in environmentally stressed extant reptile species. Geologic stage was a more consistent predictor of cortical vascularity. We suggest that Permian and Triassic Moschorhinus exhibited differential rates of early skeletal growth, corroborating the hypothesis that increased environmental variability in the earliest Triassic was associated with rapid growth to a minimum body size requirement and, consequently, shortened developmental times.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abdala, F., and Giannini, N. P. 2000. Gomphodont cynodonts of the Chañares Formation: the analysis of an ontogenetic sequence. Journal of Vertebrate Paleontology 20:501506.CrossRefGoogle Scholar
Abdala, F., and Giannini, N. P. 2002. Chiniquodontid cynodonts: systematic and morphometric considerations. Palaeontology 45:11511170.CrossRefGoogle Scholar
Abdala, F., and Ribeiro, A. M. 2010. Distribution and diversity patterns of Triassic cynodonts (Therapsida, Cynodontia) in Gondwana. Palaeogeography, Palaeoclimatology, Palaeoecology 286:202217.CrossRefGoogle Scholar
Abdala, F., Rubidge, B. S., and van den Heever, J. 2008. The oldest therocephalians (Therapsida, Eutheriodontia) and the early diversification of Therapsida. Palaeontology 51:10111024.CrossRefGoogle Scholar
Amprino, R. 1947. La structure du tissu osseux envisagée comme expression de différences dans la vitesse de l'accroissement. Archives de Biologie 58:315330.Google Scholar
Angielczyk, K. D., and Walsh, M. L. 2008. Patterns in the evolution of nares size and secondary palate length in anomodont therapsids (Synapsida): implications for hypoxia as a cause of end-Permian tetrapod extinctions. Journal of Paleontology 82:528542.CrossRefGoogle Scholar
Belcher, C. M., and McElwain, J. C. 2008. Limits for combustion in low O2 redefine paleoatmospheric predictions for the Mesozoic. Science 321:11971200.CrossRefGoogle ScholarPubMed
Bennett, A. F., and Ruben, J. A. 1986. The metabolic and thermoregulatory status of therapsids. Pp. 207218inHotton, N., MacLean, P. D., Roth, J. J., and Roth, E. C., eds. The ecology and biology of mammal-like reptiles. Smithsonian Institution Press, Washington, D.C.Google Scholar
Berner, R. A. 1999. Atmospheric oxygen over Phanerozoic time. Proceedings of the National Academy of Sciences USA 96:1095510957.CrossRefGoogle ScholarPubMed
Berner, R. A. 2003. The rise of trees and their effects on Paleozoic atmospheric CO2 and O2. Comptes Rendus Geoscience 335:11731177.CrossRefGoogle Scholar
Berner, R. A. 2004. The Phanerozoic carbon cycle: CO2 and O2. Oxford University Press, Oxford.CrossRefGoogle Scholar
Berner, R. A. 2006. GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochimica et Cosmochimica Acta 70:56535664.CrossRefGoogle Scholar
Berner, R. A., VandenBrooks, J. M., and Ward, P. D. 2007. Oxygen and evolution. Science 316:557558.CrossRefGoogle ScholarPubMed
Boonstra, L. D. 1934. A contribution to the morphology of the mammal-like reptiles of the suborder Therocephalia. Annals of the South African Museum 31:215267.Google Scholar
Botha, J., and Chinsamy, A. 2000. Growth patterns deduced from the histology of the cynodonts Diademodon and Cynognathus. Journal of Vertebrate Paleontology 20:705711.CrossRefGoogle Scholar
Botha, J., and Chinsamy, A. 2004. Growth and lifestyle adaptations of the Triassic non-mammalian cynodont Trirachodon. Acta Palaeontologica Polonica 49:619627.Google Scholar
Botha, J., and Chinsamy, A. 2005. Growth patterns of Thrinaxodon, a non-mammalian cynodont from the Early Triassic of South Africa. Palaeontology 48:385394.CrossRefGoogle Scholar
Botha, J., and Smith, R. M. H. 2006. Rapid vertebrate recuperation in the Karoo Basin of South Africa following the end-Permian extinction. Journal of African Earth Sciences 45:502514.CrossRefGoogle Scholar
Botha, J., and Smith, R. M. H. 2007. Lystrosaurus species composition across the Permian-Triassic boundary in the Karoo Basin of South Africa. Lethaia 40:125137.CrossRefGoogle Scholar
Botha, J., Abdala, F., and Smith, R. 2007. The oldest cynodont: new clues on the origin and early diversification of Cynodontia. Zoological Journal of the Linnean Society 149:477492.CrossRefGoogle Scholar
Botha-Brink, J., and Angielczyk, K. 2010. Do extraordinarily high growth rates in Permo-Triassic dicynodonts (Therapsida, Anomodontia) explain their success before and after the end-Permian extinction? Zoological Journal of the Linnean Society 160:341365.CrossRefGoogle Scholar
Botha-Brink, J., and Modesto, S. P. 2011. A new skeleton of the therocephalian synapsid Olivierosuchus parringtoni from the Lower Triassic South African Karoo Basin. Palaeontology 54:591606.CrossRefGoogle Scholar
Botha-Brink, J., and Smith, R. M. H. 2011. Osteohistology of the Triassic archosauromorphs Prolacerta, Proterosuchus, Euparkeria, and Erythrosuchus from the Karoo Basin of South Africa. Journal of Vertebrate Paleontology 31:12381254.CrossRefGoogle Scholar
Botha-Brink, J., Huttenlocker, A. K., and Modesto, S. P.In press. Vertebrate paleontology of Nooitgedacht 68: A Lystrosaurus maccaigi-rich Permo-Triassic boundary locality in South Africa. InKammerer, C., Angielczyk, K., and Fröbisch, J., eds. Early evolutionary history of the Synapsida. Springer, Dordrecht.Google Scholar
Brink, A. S. 1959. Notes on some whaitsiids and moschorhinids. Palaeontologia Africana 6:2349.Google Scholar
Broom, R. 1920. On some new therocephalian reptiles from the Karroo beds of South Africa. Proceedings of the Zoological Society 3:343353.CrossRefGoogle Scholar
Buffrénil, V. de, Houssaye, A., and Böhme, W. 2007. Bone vascular supply in monitor lizards (Squamata: Varanidae): implications of size, growth, and phylogeny. Journal of Morphology 269:533543.CrossRefGoogle Scholar
Castanet, J., Curry Rogers, K., Cubo, J., Boisard, J.-J. 2000. Periosteal bone growth rates in extant ratites (ostrich and emu): implications for assessing growth in dinosaurs. Comptes Rendus de l'Académie des Sciences de Paris, Science de la Vie 323:543550.Google ScholarPubMed
Chinsamy, A. 1990. Physiological implications of the bone histology of Syntarsus rhodesiensis (Saurischia: Theropoda). Palaeontologia Africana. 27:7782.Google Scholar
Chinsamy, A. 1993. Bone histology and growth trajectory of the prosauropod dinosaur Massospondylus carinatus Owen. Modern Geology 18:319329.Google Scholar
Chinsamy, A. 2005. The microstructure of dinosaur bone: deciphering biology with fine-scale techniques. Johns Hopkins University Press, Baltimore.CrossRefGoogle Scholar
Chinsamy, A., and Raath. 1992. Preparation of fossil bone for histological examination. Palaeontologia Africana 29:3944.Google Scholar
Chinsamy-Turan, A. 2012. Forerunners of mammals: radiation, histology, biology. Indiana University Press, Bloomington.Google Scholar
Clyde, W. C., and Gingerich, P. D. 1998. Mammalian community response to the latest Paleocene thermal maximum: an isotaphonomic study in the northern Bighorn Basin, Wyoming. Geology 26:10111014.2.3.CO;2>CrossRefGoogle Scholar
Cooper, L. N., Lee, A. H., Taper, M. L., and Horner, J. R. 2008. Relative growth rates of predator and prey dinosaurs reflect effects of predation. Proceedings of the Royal Society of London B 275:26092615.Google ScholarPubMed
Cormack, D. 1987. Ham's histology. Lippincott, New York.Google Scholar
Cubo, J., Ponton, F., Laurin, M., de Margerie, E., and Castanet, J. 2005. Phylogenetic signal in bone microstructure of sauropsids. Systematic Biology 54:562574.CrossRefGoogle ScholarPubMed
Currey, J. D. 2002. Bones: structure and mechanics, 2nd ed. Princeton University Press, Princeton, N.J.CrossRefGoogle Scholar
Currey, J. D. 2003. The many adaptations of bone. Journal of Biomechanics 36:14871495.CrossRefGoogle ScholarPubMed
Currey, J. D., and McN. Alexander., R. 1985. The thickness of the walls of tubular bones. Journal of Zoology 206:453468.CrossRefGoogle Scholar
Curtin, A. J., Zug, G. R., and Spotila, J. R. 2009. Longevity and growth strategies of the desert tortoise (Gopherus agassizii) in two American deserts. Journal of Arid Environments 73:463471.CrossRefGoogle Scholar
Damiani, R., Neveling, J., Modesto, S., and Yates, Adam. 2003. Barendskraal, a diverse amniote locality from the Lystrosaurus Assemblage Zone, Early Triassic of South Africa. Palaeontologia Africana 39:5362.Google Scholar
Durand, J. F. 1991. A revised description of the skull of Moschorhinus (Therapsida, Therocephalia). Annals of the South African Museum 99:381413.Google Scholar
Enlow, D. H., and Brown, S. O. 1956. A comparative histological study of fossil and Recent bone tissues, Part I. Texas Journal of Science 8:405443.Google Scholar
Enlow, D. H., and Brown, S. O. 1957. A comparative histological study of fossil and Recent bone tissues, Part II. Texas Journal of Science 9:186214.Google Scholar
Erickson, G. M., and Tumanova, T. A. 2000. Growth curve of Psittacosaurus mongoliensis Osborn (Ceratopsia: Psittacosauridae) inferred from long bone histology. Zoological Journal of the Linnean Society 130:551566.CrossRefGoogle Scholar
Erickson, G. M., Curry Rogers, K., and Yerby, S. A. 2001. Dinosaurian growth patterns and rapid avian growth rates. Nature 412:429433.CrossRefGoogle ScholarPubMed
Erwin, D. H. 1998. The end and the beginning: recoveries from mass extinctions. Trends in Ecology and Systematics 13:344349.CrossRefGoogle ScholarPubMed
Erwin, D. H. 2006. Extinction: how life on earth nearly ended 250 million years ago. Princeton University Press, Princeton, N.J.Google Scholar
Erwin, D. H., Bowring, S. A., and Yugan, J. 2003. End-Permian mass extinctions: a review. InKoeberl, C. and MacLeod, K. G., eds. Catastrophic events and mass extinctions: impacts and beyond. Geological Society of America Special Paper 356:363383.Google Scholar
Francillon-Vieillot, H., de Buffrénil, V., Castanet, J., Géraudie, J., Meunier, F. J., Sire, J. Y., Zylberberg, L., and de Ricqlès, A. 1990. Microstructure and mineralization of vertebrate skeletal tissue. Pp. 471530inCarter, J. G., ed. Skeletal biomineralization: patterns, processes and evolutionary trends, Vol. I. Van Nostrand Reinhold, New York.Google Scholar
Frazier, M. R., Woods, H. A., and Harrison, J. F. 2001. Interactive effects of rearing temperature and oxygen on the development of Drosophila melanogaster. Physiological and Biochemical Zoology 74:641650.CrossRefGoogle ScholarPubMed
Girondot, M., and Laurin, M. 2003. Bone Profiler: a tool to quantify, model, and statistically compare bone-section compactness profiles. Journal of Vertebrate Paleontology 23:458461.CrossRefGoogle Scholar
Gotthard, K. 2001. Growth strategies of ectothermic animals in temperate environments. Pp. 287303inAtkinson, D. and Thorndyke, M., eds. Environment and animal development: genes, life histories, and plasticity. BIOS Scientific, Oxford.Google Scholar
Gould, S. J. 1977. Ontogeny and phylogeny. Belknap Press of Harvard University Press, Cambridge.Google Scholar
Hanken, J., and Wake, D. B. 1993. Miniaturization of body size: organismal consequences and evolutionary significance. Annual Review of Ecology, Evolution, and Systematics 24:501519.CrossRefGoogle Scholar
Harries, P. J., and Knorr, P. O. 2009. What does the ‘Lilliput Effect' mean? Palaeogeography, Palaeoclimatology, Palaeoecology 284:410.CrossRefGoogle Scholar
Harries, P.J., Kauffman, E. G., and Hansen, T. A. 1996. Models of biotic survival following mass extinction. InHart, M. B., ed. Biotic recovery from mass extinction events. Geological Society of London Special Publication 102:4160.CrossRefGoogle Scholar
Hayes, J. P., and O'Connor, C. S. 1999. Natural selection on thermogenic capacity of high-altitude deer mice. Evolution 53:12801287.Google ScholarPubMed
Hopson, J. A. 1991. Systematics of nonmammalian Synapsida and implications for patterns of evolution in Synapsida. Pp. 635693inSchultze, H.-P. and Trueb, L., eds. Origins of the higher groups of tetrapods: controversy and consensus. Cornell University Press, Ithaca, N.Y.Google Scholar
Hopson, J. A. 1994. Synapsid evolution and the radiation of non-eutherian mammals. InProthero, D. B. and Schoch, R. M., eds. Major features of vertebrate evolution. Paleontological Society Short Courses in Paleontology 7:190219. Paleontological Society, Knoxville, Tenn.CrossRefGoogle Scholar
Hopson, J. A., and Barghusen, H. 1986. An analysis of therapsid relationships. Pp. 83106inHotton, N., MacLean, P. D., Roth, J. J., and Roth, E. C., eds. The ecology and biology of mammal-like reptiles. Smithsonian Institution Press, Washington, D.C.Google Scholar
Horner, J. R., and Padian, K. 2004. Age and growth dynamics of Tyrannosaurus rex. Proceedings of the Royal Society of London B 271:18751880.CrossRefGoogle ScholarPubMed
Horner, J. R., de Ricqlès, A., and Padian, K. 2000. Long bone histology of the hadrosaurid dinosaur Maiasaura peeblesorum: growth dynamics and physiology based on an ontogenetic series of skeletal elements. Journal of Vertebrate Paleontology 20:115129.CrossRefGoogle Scholar
Huey, R. B., and Ward, P. D. 2005. Hypoxia, global warming, and terrestrial Late Permian extinctions. Science 308:398401.CrossRefGoogle ScholarPubMed
Huttenlocker, A. K., Sidor, C. A., and Smith, R. M. H. 2011. A new specimen of Promoschorhynchus (Therapsida: Therocephalia: Akidnognathidae) from the Lower Triassic of South Africa and its implications for theriodont survivorship across the Permo-Triassic boundary. Journal of Vertebrate Paleontology 31:405421.CrossRefGoogle Scholar
Jin, Y., Wang, Y., Henderson, C., Wardlaw, B. R., Shen, S., and Cao, C. 2006. The global boundary stratotype section and point (GSSP) for the base of Changhsingian stage (Upper Permian). Episodes 29:175182.CrossRefGoogle Scholar
Kemp, T. S. 2006a. The origin and early radiation of the therapsid mammal-like reptiles: a paleobiological hypothesis. Journal of Evolutionary Biology 19:12311247.CrossRefGoogle Scholar
Kemp, T. S. 2006b. The origin of mammalian endothermy: a paradigm for the evolution of complex biological structure. Zoological Journal of the Linnean Society 147:473488.CrossRefGoogle Scholar
Kitching, J. W. 1977. The distribution of the Karroo vertebrate fauna. Bernard Price Institute for Palaeontological Research, Memoir 1:1131.Google Scholar
Lee, A. H., Huttenlocker, A. K., Padian, K., and Woodward, H. N. 2013. Chapter 8: Analysis of growth rates. Pp. 209243inPadian, K., ed. Bone histology of fossil tetrapods: issues, methods, and databases. University of California Press, Berkeley(in press).Google Scholar
Lehrmann, D. J., Ramezani, J., Bowring, S. A., Martin, M. W., Montgomery, P., Enos, P., Payne, J. L., Orchard, M. J., Hongmei, W., and Jiayong, W. 2006. Timing and recovery from the end-Permian extinction: geochronologic and biostratigraphic constraints from south China. Geology 34:10531056.CrossRefGoogle Scholar
Luo, G., Lai, X., Shi, G. R., Jiang, H., Yin, H., Xie, S., Tong, J., Zhang, K., He, W., and Wignall, P. B. 2008. Size variation of conodont elements of the Hindeodus-Isarcicella clade during the Permian-Triassic transition in South China and its implications for mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 264:176187.CrossRefGoogle Scholar
Margerie, E. de. 2002. Laminar bone as an adaptation to torsional loads in flapping flight. Journal of Anatomy 201:521526.CrossRefGoogle ScholarPubMed
Margerie, E. de, Cubo, J., and Castanet, J. 2002. Bone typology and growth rate: testing and quantifying ‘Amprino's rule' in the mallard (Anas platyrhynchos). Comptes Rendus Biologies 325:221–30.CrossRefGoogle ScholarPubMed
Margerie, E. de, Robin, J.-P., Verrier, D., Cubo, J., Groscolas, R., and Castanet, J. 2004. Assessing a relationship between bone microstructure and growth rate: a fluorescent labeling study in the king penguin chick (Aptenodytes patagonicus). Journal of Experimental Biology 207:869879.CrossRefGoogle Scholar
Mendrez, C. H. 1974a. Etude du crane d'un jeune specimen de Moschorhinus kitchingi Broom, 1920 (?Tigrisuchus simus Owen, 1876), Therocephalia, Pristerosauria, Moschorhinidae d'Afrique Australe (Remarques sur les Moschorhinidae et les Whaitsiidae). Annals of the South African Museum 64:71115. [In French.]Google Scholar
Mendrez, C. H. 1974b. A new specimen of Promoschorhynchus platyrhinus Brink 1954 (Moschorhinidae) from the Daptocephalus-zone (Upper Permian) of South Africa. Palaeontologia Africana 17:6985.Google Scholar
Metcalfe, B., Twitchett, R. J., and Price-Lloyd, N. 2011. Size and growth rate of ‘Lilliput' animals in the earliest Triassic. Palaeogeography, Palaeoclimatology, Palaeoecology 308:171180.CrossRefGoogle Scholar
Mundil, R., Ludwig, K. R., Metcalfe, I., and Renne, P. R. 2004. Age and timing of the Permian mass extinctions: U/Pb dating of closed-system zircons. Science 305:17601763.CrossRefGoogle ScholarPubMed
Owerkowicz, T., Elsey, R. M., and Hicks, J. W. 2009. Atmospheric oxygen level affects growth trajectory, cardiopulmonary allometry and metabolic rate in the American alligator (Alligator mississippiensis). Journal of Experimental Biology 212:12371247.CrossRefGoogle ScholarPubMed
Owerkowicz, T., Andrade, F., Elsey, R., Middleton, K., and Hicks, J. 2010. Atmospheric hypoxia increases bone robusticity in the American alligator. Journal of Vertebrate Paleontology 30 (Suppl. to No. 5):142A.Google Scholar
Ray, S., and Chinsamy, A. 2004. Diictodon feliceps (Therapsida, Dicynodontia): bone histology, growth and biomechanics. Journal of Vertebrate Paleontology 24:180194.CrossRefGoogle Scholar
Ray, S., Botha, J., and Chinsamy, A. 2004. Bone histology and growth patterns of some nonmammalian therapsids. Journal of Vertebrate Paleontology 24:634648.CrossRefGoogle Scholar
Ray, S., Chinsamy, A., and Bandyopadhyay, S. 2005. Lystrosaurus murrayi (Therapsida; Dicynodontia): bone histology, growth and lifestyle adaptations. Palaeontology 48:11691185.CrossRefGoogle Scholar
Ray, S., Bandyopadhyay, S., and Appana, R. 2010. Chapter 5: Bone histology of a kannemeyriid dicynodont Wadiasaurus: palaeobiological implications. Pp. 7389inBandyopadhyay, S., ed. New aspects of Mesozoic biodiversity (Lecture Notes in Earth Sciences 132). Springer, Berlin.CrossRefGoogle Scholar
Reid, R. E. H. 1984. The histology of dinosaurian bone, and its possible bearing on dinosaurian physiology. Zoological Symposium 52:629663.Google Scholar
Reid, R. E. H. 1985. On supposed Haversian bone from the hadrosaur Anatosaurus, and the nature of compact bone in dinosaurs. Journal of Paleontology 59:140148.Google Scholar
Retallack, G. J., Smith, R. M. H., and Ward, P. D. 2003. Vertebrate extinction across the Permian-Triassic boundary in the Karoo Basin of South Africa. Bulletin of the Geological Society of America 115:11331152.CrossRefGoogle Scholar
Ricqlès, A. de. 1974. Evolution of endothermy: histological evidence. Evolutionary Theory 1:5180.Google Scholar
Ricqlès, A. de. 1976. On bone histology of fossil and living reptiles, with comments on its functional and evolutionary significance. Pp. 123150inA. d‘A. Bellairs and Cox, C. B., eds. Morphology and biology of reptiles. Academic Press, London.Google Scholar
Ricqlès, A. de, Padian, K., Knoll, F., and Horner, J. R. 2008. On the origin of high growth rates in archosaurs and their ancient relatives: complementary histological studies on Triassic archosauriforms and the problem of a “phylogenetic signal” in bone histology. Annales de Paléontologie 94:5776.CrossRefGoogle Scholar
Roopnarine, P. D., and Angielczyk, K. D. 2012. The evolutionary palaeoecology of species and the tragedy of the commons. Biology Letters 8:147150.CrossRefGoogle ScholarPubMed
Roopnarine, P. D., Angielczyk, K. D., Wang, S. C., and Hertog, R. 2007. Trophic network models explain instability of Early Triassic terrestrial communities. Proceedings of the Royal Society of London B 274:20772086.Google ScholarPubMed
Ruben, J. A., Hillenius, W. J., Kemp, T. S., and Quick, D. E. 2012. The evolution of mammalian endothermy. Pp. 273286inChinsamy-Turan, A., ed. Forerunners of mammals: radiation, histology, biology. Indiana University Press. Bloomington.Google Scholar
Rubidge, B. S., and Sidor, C. A. 2001. Evolutionary patterns among Permo-Triassic therapsids. Annual Review of Ecology and Systematics 32:449480.CrossRefGoogle Scholar
Russell, G. A., Rezende, E. L., and Hammond, K. A. 2008. Development partly determines the aerobic performance of adult deer mice, Peromyscus maniculatus. Journal of Experimental Biology 211:3541.CrossRefGoogle ScholarPubMed
Sahney, S., and Benton, M. J. 2008. Recovery from the most profound mass extinction of all time. Proceedings of the Royal Society of London B 275:759765.Google ScholarPubMed
Secord, R., Bloch, J. I., Chester, S. G. B., Boyer, D. M., Wood, A. R., Wing, S. L., Kraus, M. J., McInerney, F. A., and Krigbaum, J. 2012. Evolution of the earliest horses driven by climate change in the Paleocene-Eocene thermal maximum. Science 335:959962.CrossRefGoogle ScholarPubMed
Shen, S.-z., Crowley, J. L., Wang, Y., Bowring, S. A., Erwin, D. H., Sadler, P. M., Cao, C.-q., Rothman, D. H., Henderson, C. M., Ramezani, J., Zhang, H., Shen, Y., Wang, X.-d., Wang, W., Mu, L., Li, W.-z., Tang, Y.-g., Liu, X.-l., Liu, L.-j., Zeng, Y., Jiang, Y.-f., and Jin, Y.-g. 2011. Calibrating the end-Permian mass extinction. Science 334:13671372.CrossRefGoogle ScholarPubMed
Sidor, C. A. 2001. Simplification as a trend in synapsid cranial evolution. Evolution 55:14191442.Google ScholarPubMed
Sidor, C. A. 2003. Evolutionary trends and the origin of the mammalian lower jaw. Paleobiology 29:605640.2.0.CO;2>CrossRefGoogle Scholar
Sidor, C. A., and Smith, R. M. H. 2004. A new galesaurid (Therapsida: Cynodontia) from the Lower Triassic of South Africa. Palaeontology 46:535556.CrossRefGoogle Scholar
Smith, R. M. H. 1995. Changing fluvial environments across the Permian-Triassic boundary in the Karoo Basin, South Africa and possible causes of tetrapod extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology 117:81104.CrossRefGoogle Scholar
Smith, R. M. H., and Botha, J. 2005. The recovery of terrestrial vertebrate diversity in the South African Karoo Basin after the end-Permian extinction. Comptes Rendus Palevol 4:623636.CrossRefGoogle Scholar
Smith, R. M. H., and Ward, P. D. 2001. Pattern of vertebrate extinctions across an event bed at the Permian-Triassic boundary in the Karoo Basin of South Africa. Geological Society of America 29:11471150.Google Scholar
Snyder, L. R. G. 1981. Deer mouse hemoglobins: is there genetic adaptation to high altitude? BioScience 31:299304.Google Scholar
Song, H., Tong, J., and Chen, Z. Q. 2011. Evolutionary dynamics of the Permian-Triassic foraminifer size: Evidence for Lilliput effect in the end-Permian mass extinction and its aftermath. Palaeogeography, Palaeoclimatology, Palaeoecology 308:98110.CrossRefGoogle Scholar
Stearns, S. C. 1992. The evolution of life histories. Oxford University Press, Oxford.Google Scholar
Twitchett, R. J. 2007. The Lilliput effect in the aftermath of the end-Permian extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology 252:132144.CrossRefGoogle Scholar
Twitchett, R. J., Looy, C. V., Morante, R., Visscher, H., and Wignall, P. B. 2001. Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian biotic crisis. Geology 29:351354.2.0.CO;2>CrossRefGoogle Scholar
Urbanek, A. 1993. Biotic crises in the history of Upper Silurian graptoloids: a paleobiological model. Historical Biology 7:2950.CrossRefGoogle Scholar
VandenBrooks, J. M. 2007. The effects of varying partial pressure of oxygen on vertebrate development and evolution. Ph.D. dissertation. Yale University, New Haven, Conn.Google Scholar
Ward, P. D., Botha, J., Buick, R., Dekock, M. O., Erwin, D. H., Garrison, G., Kirschvink, J., and Smith, R. M. H. 2005. Abrupt and gradual extinction among Late Permian land vertebrates in the Karoo Basin, South Africa. Science 307:709714.CrossRefGoogle ScholarPubMed
Wilson, J. W. 1994. Histological techniques. Pp. 205234inLeiggi, P. and May, P., eds. vertebrate paleontological techniques. Cambridge University Press, New York.Google Scholar
Woodward, H. N., Horner, J. R., and Farlow, J. O. 2011. Osteohistological evidence for determinate growth in the American alligator. Journal of Herpetology 45:339342.CrossRefGoogle Scholar
Woods, H. A., and Hill, R. I. 2004. Temperature-dependent oxygen limitations in insect eggs. Journal of Experimental Biology 207:22672276.CrossRefGoogle ScholarPubMed