Hostname: page-component-5c6d5d7d68-ckgrl Total loading time: 0 Render date: 2024-08-15T14:21:54.011Z Has data issue: false hasContentIssue false

Species level phenotypic variation in lower Paleozoic trilobites

Published online by Cambridge University Press:  08 February 2016

Loren H. Smith*
Affiliation:
Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138

Abstract

Phenotypic variation within species provides the raw material acted upon by natural selection and other evolutionary mechanisms. As such, the range and variation of morphology within a species can play an important role in determining the tempo of evolution. The range and variance of aspects of cranidial morphology for nine lower Paleozoic trilobites were measured to identify microevolutionary correlates of macroevolutionary patterns. Comparisons were made among sets of homologous landmarks or upon partial warp vector matrices containing similar proportions of variance. Rarefaction and bootstrap analyses helped estimate the effects of sampling. Levels of variance and range of morphology differed considerably within and among time periods. There is no significant temporal decline in the variance or range of morphology, suggesting that developmental or genomic constraints may not have been the primary factors controlling the tempo of trilobite macroevolution. The spatial distribution of cranidial variance differed considerably among taxa, suggesting that a complex set of developmental processes governed the morphogenesis of cranidia within trilobites.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bader, R. S. 1955. Variability and evolutionary rate in the oreodonts. Evolution 9:119140.CrossRefGoogle Scholar
Bambach, R. K. 1977. Species richness in marine benthic habitats through the Phanerozoic. Paleobiology 3:152167.CrossRefGoogle Scholar
Bambach, R. K. 1983. Ecospace utilization and guilds in marine communities through the Phanerozoic. Pp. 719746in Tevesz, M. J. S. and McCall, P. M., eds. Biotic interactions in Recent and fossil benthic communities. Plenum, New York.CrossRefGoogle Scholar
Bambach, R. K. 1985. Classes and adaptive variety: the ecology of diversification in marine faunas through the Phanerozoic. Pp. 191253in Valentine, J. W., ed. Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press, Princeton, N.J.Google Scholar
Benson, R. H., Chapman, R. E., and Siegel, A. F. 1982. The measurement of morphology and its change. Paleobiology 8:328339.CrossRefGoogle Scholar
Bookstein, F. L. 1986. Size and shape spaces for landmark data in two dimensions. Statistical Science 1:181242.Google Scholar
Bookstein, F. L. 1989. Principal warps: thin-plate splines and the decomposition of deformations. I.E.E.E. Transactions in Pattern Analysis and Machine Intelligence 11:567585.CrossRefGoogle Scholar
Bookstein, F. L. 1990. Higher order features of shape change. Pp. 237250in Rohlf, and Bookstein, 1990.Google Scholar
Bookstein, F. L. 1991. Morphometric tools for landmark data: geometry and biology. Cambridge University Press, Cambridge.Google Scholar
Bookstein, F. L., Strauss, R. E., Humphries, J. M., Chernoff, B., Elder, R. L., and Smith, G. R. 1982. A comment upon the uses of Fourier methods in systematics. Systematic Zoology 31:8592.CrossRefGoogle Scholar
Bottjer, D. J., and Jablonski, D. 1988. Paleoenvironmental patterns in the evolution of post-Paleozoic benthic marine invertebrates. Palaios 3:540560.CrossRefGoogle Scholar
Bottjer, D. J., Schubert, J. K., and Droser, M. L. 1996. Comparative evolutionary palaeoecology: assessing the changing ecology of the past. Pp. 113in Hart, M. B., ed. Biotic recovery from mass extinction events. Geological Society of London Special Publication 102.Google Scholar
Brett, C. E., and Baird, G. C. 1993. Taphonomic approaches to temporal resolution in stratigraphy: examples from Paleozoic marine mudrocks. In Kidwell, S. M. and Behrensmeyer, A. K., eds. Taphonomic approaches to time resolution in the fossil record. Short Courses in Paleontology 6:250274. Paleontological Society, Knoxville, Tenn.Google Scholar
Briggs, D. E. G., Fortey, R. A., and Wills, M. A. 1992. Morphological disparity in the Cambrian. Science 256:16701673.CrossRefGoogle ScholarPubMed
Cheverud, J. M., Lewis, J. L., Bachrach, W. B., and Lew, W. B. 1983. The measurement of form and variation in form: an application of three-dimensional quantitative morphology by finite-element methods. American Journal of Physical Anthropology 62:151165.CrossRefGoogle ScholarPubMed
Cooper, B. N., and Cooper, G. A. 1946. Lower Middle Ordovician stratigraphy of the Shenandoah Valley, Virginia. Geological Society of America Bulletin 57:35114.CrossRefGoogle Scholar
Davidson, E. H., Peterson, K. J., and Cameron, R. A. 1995. Origin of bilaterian body plans: evolution of developmental regulatory mechanisms. Science 270:13191325.CrossRefGoogle ScholarPubMed
Droser, M. L., and Bottjer, D. J. 1989. Ordovician increase in extent and depth of bioturbation: implications for understanding early Paleozoic ecospace utilization. Geology 17:850852.2.3.CO;2>CrossRefGoogle Scholar
Ehrlich, R., Pharr, R. B., and Healy-Williams, N. 1983. Comments on the validity of Fourier descriptors in systematics: a reply to Bookstein et al. Systematic Zoology 32:202206.CrossRefGoogle Scholar
Erwin, D. H. 1994. Early introduction of major morphological innovations. Acta Palaeontologica Polonica 38:281294.Google Scholar
Erwin, D. H., Valentine, J. W., and Sepkoski, J. J. Jr. 1987. A comparative study of diversification events. The early Paleozoic versus the Mesozoic. Evolution 41:11771186.CrossRefGoogle ScholarPubMed
Fichter, L. S., and Diecchio, R. J. 1986. The Taconic sequence in the northern Shenandoah Valley, Viriginia. Pp. 7378in Neathery, T. L., ed. Centennial Field Guide. Geological Society of America, Boulder, Colo.Google Scholar
Foote, M. 1988. Survivorship analysis of Cambrian and Ordovician trilobites. Paleobiology 14:258271.CrossRefGoogle Scholar
Foote, M. 1989. Perimeter-based Fourier analysis: a new morphometric method applied to the trilobite cranidium. Journal of Paleontology 63:880885.CrossRefGoogle Scholar
Foote, M. 1990. Nearest-neighbor analysis of trilobite morphospace. Systematic Zoology 39:371382.CrossRefGoogle Scholar
Foote, M. 1991a. Analysis of Morphological Data. In Gilinsky, N. L. and Signor, P. W., eds. Analytical paleobiology. Short Courses in Paleontology 4:5986. The Paleontological Society, Knoxville, Tenn.Google Scholar
Foote, M. 1991b. Morphologic patterns of diversification: examples from trilobites. Palaeontology 34:461485.Google Scholar
Foote, M. 1991c. Morphological and taxonomic diversity in a clade's history: the blastoid record and stochastic simulations. Contributions from the Museum of Paleontology, University of Michigan 28:101140.Google Scholar
Foote, M. 1993. Discordance and concordance between morphological and taxonomic diversity. Paleobiology 19:185204.CrossRefGoogle Scholar
Futterer, E. 1978. Flume studies on the orientation, accumulation and burial of biogenic particles. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 156:87131.Google Scholar
Gould, S. J. 1989. Wonderful life. W. W. Norton, New York.Google Scholar
Gould, S. J. 1991. The disparity of the Burgess Shale arthropod fauna and the limits of cladistic analysis. Why we must strive to quantify morphospace. Paleobiology 17:411423.CrossRefGoogle Scholar
Gould, S. J. 1993. How to analyze Burgess Shale disparity—a reply to Ridley. Paleobiology 19:522523.CrossRefGoogle Scholar
Guthrie, R. D. 1965. Variability in characters undergoing rapid evolution, an analysis of Microtus molars. Evolution 19:214233.CrossRefGoogle Scholar
Hu, C.-H. 1963. The dimorphism and ontogeny of Norwoodella halli Resser. Transactions and Proceedings of the Palaeontological Society of Japan, New Series 52:129132.Google Scholar
Hu, C.-H. 1971. Ontogeny and sexual dimorphism of lower Paleozoic trilobita. Palaeontographica Americana 7:1155.Google Scholar
Hughes, N. C. 1991. Morphological plasticity and genetic flexibility in a Cambrian trilobite. Geology 19:913916.2.3.CO;2>CrossRefGoogle Scholar
Hughes, N. C. 1993. Distribution, taphonomy and functional morphology of the Upper Cambrian trilobite Dikelocephalus. Milwaukee Public Museum Contributions in Biology and Geology 84:149.Google Scholar
Hughes, N. C. 1994. Ontogeny, intraspecific variation, and systematics of the Late Cambrian trilobite Dikelocephalus. Smithsonian Contributions to Paleobiology 79:189.CrossRefGoogle Scholar
Hughes, N. C.In press. Statistical and imaging methods applied to deformed fossils. in Harper, D. A. T., ed. Statistics in palaeontology, Wiley, New York.Google Scholar
Hughes, N. C., and Chapman, R. E. 1995. Growth and variation in the Silurian proetide trilobite Aulacopleura konincki and its implications for trilobite paleobiology. Lethaia 28:333353.CrossRefGoogle Scholar
Hughes, N. C., and Jell, P. A. 1992. A statistical/computer-graphic technique for assessing variation in tectonically deformed fossils and its application to Cambrian trilobites from Kashmir. Lethaia 25:317330.CrossRefGoogle Scholar
Hughes, N. C., and Rushton, A. W. A. 1990. Computer-aided restoration of a Late Cambrian ceratopygid trilobite from Wales, and its phylogenetic implications. Palaeontology 33:429445.Google Scholar
Jablonski, D., and Bottjer, D. J. 1990a. The ecology of evolutionary innovation: the fossil record. Pp. 253288in Nitecki, M., ed. Evolutionary innovations. University of Chicago Press, Chicago.Google Scholar
Jablonski, D., and Bottjer, D. J. 1990b. Onshore–offshore trends in marine invertebrate evolution. Pp. 2175in Ross, R. M. and Allmon, W. D., eds. Causes of evolution—a paleontological perspective. University of Chicago Press, Chicago.Google Scholar
Jablonski, D., and Lutz, R. A. 1979. Larval ecology of extinct molluscs: comment on larval development of hyolithids. Lethaia 12:306.CrossRefGoogle Scholar
Johnson, M. R., Tabachnick, R. E., and Bookstein, F. L. 1991. Landmark-based morphometrics of spiral accretionary growth. Paleobiology 17:1936.CrossRefGoogle Scholar
Kreisa, R. D. 1981. Storm-generated sedimentary structures in subtidal marine facies with examples from the Middle and Upper Ordovician of southwestern Virginia. Journal of Sedimentary Petrology 51:823848.Google Scholar
Labandiera, C. C., and Hughes, N. C. 1994. Biometry of the Late Cambrian trilobite genus Dikelocephalus and its implications for trilobite systematics. Journal of Paleontology 68:492517.CrossRefGoogle Scholar
Lele, S. 1993. Euclidian distance matrix analysis (EDMA) of landmark data: estimation of mean form and mean form difference. Mathematical Geology 25:573602.CrossRefGoogle Scholar
Lele, S., and Richtsmeier, J. T. 1991. Euclidean distance matrix analysis: a coordinate free approach for comparing biological shapes using landmark data. American Journal of Physical Anthropology 86:415428.CrossRefGoogle ScholarPubMed
Lele, S., and Richtsmeier, J. T. 1992. On comparing biological shapes: detection of influential landmarks. American Journal of Physical Anthropology 87:4966.CrossRefGoogle ScholarPubMed
Lohman, G. P., and Schweitzer, P. N. 1990. On eigenshape analysis. Pp. 147166in Rohlf, and Bookstein, 1990.Google Scholar
MacLeod, N., and Rose, K. D. 1993. Inferring locomotor behavior in Paleogene mammals via eigenshape analysis. American Journal of Science 293-A:300355.CrossRefGoogle Scholar
Marcus, L. 1990. Traditional morphometrics. Pp. 77122in Rohlf, and Bookstein, 1990.Google Scholar
McNamara, K. J. 1981. The role of paedomorphosis in the evolution of Cambrian trilobites. U.S. Geological Survey Open File Report 81–743:126129.Google Scholar
McNamara, K. J. 1983. Progenesis in trilobites. Special Papers in Palaeontology 30:5968.Google Scholar
McNamara, K. J. 1986. The role of heterochrony in the evolution of Cambrian trilobites. Biological Reviews 61:121156.CrossRefGoogle Scholar
Middleton, G. V. 1967. The orientation of concavo-convex particles deposited from experimental currents. Journal of Sedimentary Petrology 37:229232.CrossRefGoogle Scholar
Nagle, J. S. 1967. Wave and current orientation of shells. Journal of Sedimentary Petrology 17:11241138.Google Scholar
Olson, E. C., and Miller, R. L. 1958. Morphological integration. University of Chicago Press, Chicago.Google Scholar
Ray, T. 1990. Application of eigenshape analysis to second order leaf shape ontogeny in Syngonium podophyllum (Araceae). Pp. 201213in Rohlf, and Bookstein, 1990.Google Scholar
Read, J. F. 1980. Carbonate ramp-to-basin transitions and foreland basin evolution, Middle Ordovician, Virginia Appalachians. American Association of Petroleum Geologists Bulletin 64:15751612.Google Scholar
Read, J. F. 1982. Geometry, facies and development of Middle Ordovician carbonate buildups, Virginia Appalachians. American Association of Petroleum Geologists Bulletin 66:189209.Google Scholar
Reyment, R. A. 1990. Reification of classical multivariate analysis in morphometry. Pp. 123144in Rohlf, and Bookstein, 1990.Google Scholar
Reyment, R. A. 1991. Multidimensional Paleobiology. Pergamon, Oxford.Google Scholar
Reyment, R., and Jšreskog, K. G. 1993. Applied factor analysis in the natural sciences. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Richtsmeier, J. T., Corner, B. D., Grausz, H. M., Cheverud, J. M., and Danahey, S. E. 1993. The role of postnatal growth pattern in the production of facial morphology. Systematic Biology 42:307330.CrossRefGoogle Scholar
Rohlf, F.J. 1990a. Fitting curves to outlines. Pp. 176178in Rohlf, and Bookstein, 1990.Google Scholar
Rohlf, F.J. 1990b. Morphometrics. Annual Reviews of Ecology and Systematics 21:299316.CrossRefGoogle Scholar
Rohlf, F. J., and Archie, J. W. 1984. A comparison of fourier methods for the description of wing shape in mosquitoes (Diptera: Culicidae). Systematic Zoology 33:302317.CrossRefGoogle Scholar
Rohlf, F. J., and Bookstein, F. L. 1990. Proceedings of the Michigan Morphometrics Workshop. Museum of Zoology, University of Michigan, Ann Arbor.Google Scholar
Rohlf, F. J., and Marcus, L. F. 1993. A revolution in morphometrics. Trends in Ecology and Evolution 8:129132.CrossRefGoogle Scholar
Rohlf, F. J., and Slice, D. 1990. Extensions of the procrustes method for the optimal superimposition of landmarks. Systematic Zoology 39:4059.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1979. A kinetic model of Phanerozoic taxonomic diversity. II. Early Phanerozoic families and multiple equilibria. Paleobiology 5:222251.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7:3653.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1984. A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions. Paleobiology 10:246267.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1992. A compendium of fossil marine animal families, 2d ed.Milwaukee Public Museum Contributions in Biology and Geology. Milwaukee, Wisc.Google ScholarPubMed
Shaw, A. B. 1957. Quantitative trilobite studies. II. Measurement of the dorsal shell of non-Agnostidean trilobites. Journal of Paleontology 31:193207.Google Scholar
Shergold, J. H., Laurie, J. R., and Xiaowen, S. 1990. Classification and review of the trilobite order Agnostida Salter, 1864: an Australian perspective. Bureau of Mineral Resources, Geology and Geophysics (Australia) 296:129.Google Scholar
Siegel, A. F., and Benson, R. H. 1982. A robust comparison of biological shapes. Biometrics 38:341350.CrossRefGoogle ScholarPubMed
Signor, P. W. 1985. Real and apparent trends in species richness through time. Pp. 129150in Valentine, J. W., ed. Phanerozoic Diversity Patterns. Princeton University Press, Princeton, N.J.Google Scholar
Signor, P. W. 1990. The geologic history of diversity. Annual Review of Ecology and Systematics 21:509539.CrossRefGoogle Scholar
Soulé, M. E. 1982. Allomeric variation. I. The theory and some consequences. The American Naturalist 120:751764.CrossRefGoogle Scholar
Soulé, M. E., and Cuzin-Roudy, J. 1982. Allomeric variation. II. Developmental instability of extreme phenotypes. The American Naturalist 120:765786.CrossRefGoogle Scholar
Speyer, S. E. 1985. Trilobite taphonomy: a basis for comparative studies of arthropod preservation, functional anatomy and behaviour. Pp. 194219in Donovan, S. K., ed. The process of fossilization. Columbia University Press, New York.Google Scholar
Speyer, S. E. 1987. Comparative taphonomy and palaeoecology of trilobite lagerstštten. Alcheringa 11:205232.CrossRefGoogle Scholar
Speyer, S. E., and Brett, C. E. 1986. Trilobite taphonomy and Middle Devonian tapofacies. Palaios 1:312327.CrossRefGoogle Scholar
Strauss, R. E., and Bookstein, F. L. 1982. The truss: body form reconstructions in morphometrics. Systematic Zoology 31:113135.CrossRefGoogle Scholar
Swiderski, D. L. 1993. Morphological evolution of the scapula in tree squirrels, chipmunks, and ground squirrels (Sciuridae): an analysis using thin-plate splines. Evolution 47:18541873.CrossRefGoogle ScholarPubMed
Tabachnick, R. E., and Bookstein, F. L. 1990. The structure of individual variation in Miocene Globorotalia. Evolution 44:416434.CrossRefGoogle ScholarPubMed
Valentine, J. W. 1980. Determinants of diversity in higher taxonomic categories. Paleobiology 6:444450.CrossRefGoogle Scholar
Valentine, J. W. 1986. Fossil record of the origin of Bauplšne and its implications. Pp. 209222in Raup, D. M. and Jablonski, D., eds. Patterns and processes in the history of life. Springer, Berlin.CrossRefGoogle Scholar
Valentine, J. W. 1995. Why no new phyla after the Cambrian? Genome and ecospace hypotheses revisited. Palaios 10:190194.CrossRefGoogle Scholar
Van Valen, L. 1969. Variation genetics of extinct animals. The American Naturalist 103:193224.CrossRefGoogle Scholar
Wagner, P. J. 1995. Testing evolutionary constraint hypotheses with early Paleozoic gastropods. Paleobiology 21:248272.CrossRefGoogle Scholar
Wray, G. A., Levinton, J. S., and Shapiro, L. H. 1996. Molecular evidence for deep Precambrian divergences among Metazoan phyla. Science 274:568573.CrossRefGoogle Scholar
Zelditch, M. L., Bookstein, F. L., and Lundrigan, B. L. 1993. The ontogenetic complexity of developmental constraints. Journal of Evolutionary Biology 6:621641.CrossRefGoogle Scholar