Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-16T15:25:17.521Z Has data issue: false hasContentIssue false

Taxonomic composition and body-mass distribution in the terminal Pleistocene mammalian fauna from the Marmes site, southeastern Washington State, U.S.A.

Published online by Cambridge University Press:  27 March 2013

R. Lee Lyman*
Affiliation:
Department of Anthropology, University of Missouri, Columbia, Missouri 65211, U.S.A. E-mail: lymanr@missouri.edu

Abstract

Mean adult body mass of mammal taxa is a fundamental ecological variable. Variability in the distributions of body masses of a mammal fauna suggest variability in habitat structure. Mammal remains from the Marmes archaeological site in southeastern Washington State date between 13,200 and 10,400 b.p., during the Pleistocene–Holocene transition (PHT). Known environmental history prompts the expectations that the Marmes PHT mammal remains should represent greater species richness and a larger array of body-mass sizes than modern faunas in the Marmes locale and in open shrub-steppe habitats, and lower species richness and a smaller array of body-mass sizes than modern faunas in closed forest habitats; species richness and the array of body-mass sizes should be similar to that for a mixed habitat of cool shrub-steppe with scattered conifers. The Marmes PHT cenogram meets these expectations. Body-mass clumps displayed by the Marmes PHT mammal fauna fall between those of closed forests and open shrub-steppe habitats in terms of clump richness and breadth, and in terms of gap width. Marmes PHT body-mass clumps are very similar to those for the mixed habitat. Cenograms and body-mass clumps confirm conclusions drawn 40 years ago that the Marmes PHT habitat was much like that of today but cooler and with more plant biomass and greater structural diversity than today.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alroy, J. 2000. New methods for quantifying macroevolutionary patterns and processes. Paleobiology 26:707743.2.0.CO;2>CrossRefGoogle Scholar
Alroy, J. 2003. Taxonomic inflation and body mass distributions in North American fossil mammals. Journal of Mammalogy 84:431443.2.0.CO;2>CrossRefGoogle Scholar
Barnosky, A. D. 2008. Megafauna biomass tradeoff as a driver of Quaternary and future extinctions. Proceedings of the National Academy of Sciences USA 105:1154311548.CrossRefGoogle ScholarPubMed
Barnosky, A. D. 2009. Heatstroke: nature in an age of global warming. Island Press, Washington, D.C.Google Scholar
Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L., and Shabel, A. B. 2004. Assessing the causes of late Pleistocene extinctions on the continents. Science 306:7075.CrossRefGoogle ScholarPubMed
Beals, E. W. 1969. Vegetational change along altitudinal gradients. Science 165:981985.CrossRefGoogle ScholarPubMed
Bell, C. J., and Mead, J. I. 1998. Late Pleistocene microtine rodents from Snake Creek Burial Cave, White Pine County, Nevada. Great Basin Naturalist 58:8286.Google Scholar
Borthagaray, A. I., Arim, M., and Marquet, P. A. 2012. Connecting landscape structure and patterns in body size distributions. Oikos 121:697710.CrossRefGoogle Scholar
Brown, J. H. 1981. Two decades of homage to Santa Rosalia: toward a general theory of diversity. American Zoologist 21:877888.CrossRefGoogle Scholar
Brown, J. H. 2004. Toward a metabolic theory of ecology. Ecology 85:17711789.CrossRefGoogle Scholar
Burns, J. A. 1982. Water vole Microtus richardsoni (Mammalia, Rodentia) from the late Pleistocene of Alberta. Canadian Journal of Earth Sciences 19:628631.CrossRefGoogle Scholar
Caulk, G. H. 1988. Examination of some faunal remains from the Marmes Rockshelter floodplain. M.A. thesis. Washington State University, Pullman.Google Scholar
Chatters, J. C. 1998. Environment. Pp. 2948inWalker, D. E., ed. Handbook of North American Indians, Vol. 12. Plateau. Smithsonian Institution Press, Washington, D.C.Google Scholar
Clark, P. U., Shakun, J. D., Baker, P. A., et al. 2012. Global climate evolution during the last deglaciation. Proceedings of the National Academy of Sciences USA 109:E1134E1142.CrossRefGoogle ScholarPubMed
Cornelius, J. M., and Reynolds, J. F. 1991. On determining the statistical significance of discontinuities with ordered ecological data. Ecology 72:20572070.CrossRefGoogle Scholar
Costeur, L., and Legendre, S. 2008. Mammalian communities document a latitudinal environmental gradient during the Miocene climatic optimum in western Europe. Palaios 23:280288.CrossRefGoogle Scholar
Croft, D. A. 2001. Cenozoic environmental change in South America as indicated by mammalian body size distributions (cenograms). Diversity and Distributions 7:271287.CrossRefGoogle Scholar
Currie, D. J. 1991. Energy and large-scale patterns of animal- and plant-species richness. American Naturalist 137:2749.CrossRefGoogle Scholar
Damuth, J., and MacFadden, B. J., eds. 1990. Body size in mammalian paleobiology. Cambridge University Press, Cambridge.Google Scholar
Daubenmire, R. 1970. Steppe vegetation of Washington. Washington Agricultural Experiment Station Technical Bulletin 62. Washington State University, Pullman.Google Scholar
Daubenmire, R. 1975. Floristic plant geography of eastern Washington and northern Idaho. Journal of Biogeography 2:118.CrossRefGoogle Scholar
Daubenmire, R., and Daubenmire, J. B. 1968. Forest vegetation of eastern Washington and northern Idaho. Washington Agricultural Experiment Station Technical Bulletin 60. Washington State University, Pullman.Google Scholar
Eisenberg, J. F. 1990. The behavioral/ecological significance of body size in Mammalia. Pp. 2537in Damuth and MacFadden 1990.Google Scholar
Faunmap Working Group. 1996. Spatial response of mammals to late Quaternary environmental fluctuations. Science 272:16011606.CrossRefGoogle Scholar
Gingerich, P. D. 1989. New earliest Wasatchian mammalian fauna from the Eocene of northwestern Wyoming: composition and diversity in a rarely sampled high-floodplain assemblage. University of Michigan Papers in Paleontology 1:197.Google Scholar
González-Suárez, M., Lucas, P. M., and Revilla, E. 2012. Biases in comparative analyses of extinction risk: mind the gap. Journal of Animal Ecology 81:12111222.CrossRefGoogle ScholarPubMed
Graham, M. A., Wilson, M. C., and Graham, R. W. 1987. Paleoenvironments and mammalian faunas of Montana, southern Alberta, and southern Saskatchewan. Pp. 410459inGraham, R. W., Semken, H. A. Jr., and Graham, M. A., eds. Late Quaternary environments of the Great Plains and prairies. Illinois State Museum Scientific Papers, Vol. 22. Springfield.Google Scholar
Graham, R. W., and Lundelius, E. L. Jr., eds. 1994. Faunmap: a database documenting Late Quaternary distributions of mammal species in the United States. Illinois State Museum Scientific Papers, Vol. 25. Springfield.Google Scholar
Graham, R. W., and Mead, J. I. 1987. Environmental fluctuations and evolution of mammalian faunas during the last deglaciation. Pp. 371402inRuddiman, W. F. and Wright, H. E. Jr., eds. North America and adjacent oceans during the last deglaciation. Geology of North America, Vol. K-3. Geological Society of America, Boulder, Colo.Google Scholar
Grayson, D. K. 1983. The paleontology of Gatecliff Shelter: small mammals. InThomas, D. H., ed. The archaeology of Monitor Valley 2. Gatecliff Shelter. American Museum of Natural History Anthropological Papers 59:99126.Google Scholar
Grayson, D. K. 1984. Quantitative zooarchaeology. Academic Press, Orlando.Google Scholar
Grayson, D. K. 1985. The paleontology of Hidden Cave: birds and mammals. InThomas, D. H., ed. The archaeology of Hidden Cave. American Museum of Natural History Anthropological Papers 61:125161.Google Scholar
Grayson, D. K. 2006. The late Quaternary biogeographic histories of some Great Basin mammals (western U.S.A.). Quaternary Science Reviews 25:29642991.CrossRefGoogle Scholar
Gustafson, C. E. 1972. Faunal remains from the Marmes Rockshelter and related archaeological sites in the Columbia Basin. Ph.D. dissertation. Washington State University, Pullman.Google Scholar
Gustafson, C. E., and Wegener, R. M. 2004. Faunal remains. Pp. 253317in Hicks 2004.Google Scholar
Guthrie, R. D. 1984. Mosaics, allelochemics and nutrients: an ecological theory of Late Pleistocene megafaunal extinction. Pp. 259298inMartin, P. S. and Klein, R. G., eds. Quaternary extinctions. University of Arizona Press, Tucson.Google Scholar
Hansen, H. P. 1947. Postglacial forest succession, climate, and chronology in the Pacific Northwest. Transactions of the American Philosophical Society 37 (1):1130.CrossRefGoogle Scholar
Helgen, K. M., Cole, F. R., Helgen, L. E., and Wilson, D. E. 2009. Generic revision in the Holarctic ground squirrel genus Spermophilus. Journal of Mammalogy 90:270305.CrossRefGoogle Scholar
Hernández Fernández, M., Alberdi, M. T., Azanza, B., Montoya, P., Morales, J., Nieto, M., and Peláez-Campomanes, P. 2006. Identification problems of arid environments in the Neogene-Quaternary mammal record of Spain. Journal of Arid Environments 66:585608.CrossRefGoogle Scholar
Hicks, B. A., ed. 2004. Marmes Rockshelter: a final report on 11,000 years of cultural use. Washington State University Press, Pullman.Google Scholar
Holling, C. S. 1992. Cross-scale morphology, geometry, and dynamics of ecosystems. Ecological Monographs 62:447502.CrossRefGoogle Scholar
Holling, C. S., and Allen, C. R. 2002. Adaptive inference for distinguishing credible from incredible patterns in nature. Ecosystems 5:319328.CrossRefGoogle Scholar
Holling, C. S., Peterson, G., Marples, P., Sendsimir, J., Redford, K., Gunderson, L., and Lambert, W. 1996. Self-organization in ecosystems: lumpy geometries, periodicities, and morphologies. Pp. 346384inSelf, W. and Walker, B., eds. Global change and terrestrial ecosystems. Cambridge University Press, Cambridge.Google Scholar
Huckleberry, G., and Fadem, C. 2007. Environmental change recorded in sediments from the Marmes Rockshelter archaeological site, southeastern Washington State, USA. Quaternary Research 67:2132.CrossRefGoogle Scholar
Hughes, S. S. 2009. Noble marten (Martes americana nobilis) revisited: its adaptation and extinction. Journal of Mammalogy 90:7492.CrossRefGoogle Scholar
Huston, M. A., and Wolverton, S. 2009. The global distribution of net primary production: resolving the paradox. Ecological Monographs 79:343377.CrossRefGoogle Scholar
Huston, M. A., and Wolverton, S. 2011. Regulation of animal size by eNPP, Bergmann's rule, and related phenomena. Ecological Monographs 81:349405.CrossRefGoogle Scholar
Hutchinson, G. E. 1959. Homage to Santa Rosalia, or, why are there so many kinds of animals? American Naturalist 93:145159.CrossRefGoogle Scholar
Jacobson, J. A. 2004. Determining human ecology on the Plains through the identification of mule deer (Odocoileus hemionus) and white-tailed deer (Odocoileus virginianus) postcranial material. Ph.D. dissertation. University of Tennessee, Knoxville.Google Scholar
Johnson, R. E., and Cassidy, K. M. 1997. Terrestrial mammals of Washington State: location data and predicted distributions. Vol. 3 ofCassidy, K. M., Grue, C. E., Smith, M. R., and Dvornich, K. M., eds. Washington State gap analysis. Washington Cooperative Fish and Wildlife Research Unit, University of Washington, Seattle.Google Scholar
Johnston, C. A., Pastor, J., and Pinay, G. 1992. Quantitative methods for studying landscape boundaries. Pp. 107125inHansen, A. J. and di Castri, F., eds. Landscape boundaries. Springer, New York.CrossRefGoogle Scholar
Koch, P. L., and Barnosky, A. D. 2006. Late Quaternary extinctions: state of the debate. Annual Review of Ecology, Evolution, and Systematics 37:215250.CrossRefGoogle Scholar
Kuussaari, M., Bommarco, R., Heikkinen, R. K., Helm, A., Krauss, J., Lindborg, R., Öckinger, E., Pärtel, M., Pino, J., Rodà, F., Stefanescu, C., Teder, T., Zobel, M., and Steffan-Dewenter, I. 2009. Extinction debt: a challenge for biodiversity conservation. Trends in Ecology and Evolution 24:564571.CrossRefGoogle ScholarPubMed
Lambert, D. W. 2006. Functional convergence of ecosystems: evidence from body mass distributions of North American late Miocene mammal faunas. Ecosystems 9:97118.CrossRefGoogle Scholar
Lambert, D. W., and Holling, C. S. 1998. Causes of ecosystem transformation at the end of the Pleistocene: evidence from mammal body mass distributions. Ecosystems 1:157175.CrossRefGoogle Scholar
Legendre, S. 1986. Analysis of mammalian communities from the late Eocene and Oligocene of southern France. Palaeovertebrata 16:191212.Google Scholar
Legendre, S. 1989. Les communautés de mammifères du Paléogène (Eocène Supérieur et Oligocène) d'Europe occidentale: structures, milieux et évolution. Münchner Geowissenschaftliche, Abhandlungen A 16:1110.Google Scholar
Ludwig, J. A., and Cornelius, J. M. 1987. Locating discontinuities along ecological gradients. Ecology 68:448450.CrossRefGoogle Scholar
Lyman, R. L. 1986. On the analysis and interpretation of species list data in zooarchaeology. Journal of Ethnobiology 6:6781.Google Scholar
Lyman, R. L. 2004a. Late-Quaternary diminution and abundance of prehistoric bison (Bison sp.) in eastern Washington State, U.S.A. Quaternary Research 62:7685.CrossRefGoogle Scholar
Lyman, R. L. 2004b. Prehistoric biogeography, abundance, and phenotypic plasticity of elk (Cervus elaphus) in Washington State. Pp. 136163inLyman, R. L. and Cannon, K. P., eds. Zooarchaeology and conservation biology. University of Utah Press, Salt Lake City.Google Scholar
Lyman, R. L. 2007. The Holocene history of pronghorn (Antilocapra americana) in eastern Washington State. Northwest Science 81:104111.CrossRefGoogle Scholar
Lyman, R. L. 2008a. Quantitative paleozoology. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Lyman, R. L. 2008b. Climatic implications of latest Pleistocene and earliest Holocene mammalian sympatries in eastern Washington State, USA. Quaternary Research 70:426432.CrossRefGoogle Scholar
Lyman, R. L. 2009. The Holocene history of bighorn sheep (Ovis canadensis) in eastern Washington State, northwestern USA. The Holocene 19:143150.CrossRefGoogle Scholar
Lyman, R. L. 2010. Taphonomy, pathology and paleoecology of the terminal Pleistocene Marmes Rockshelter (45FR50) “big elk” (Cervus elaphus), southeastern Washington State, USA. Canadian Journal of Earth Sciences 47:13671382.CrossRefGoogle Scholar
Lyman, R. L. 2011. Paleoecological and biogeographical implications of late Pleistocene noble marten (Martes americana nobilis) in eastern Washington State, U.S.A. Quaternary Research 75:176182.CrossRefGoogle Scholar
Lyman, R. L. 2012a. The influence of screen-mesh size, and size and shape of rodent teeth on recovery. Journal of Archaeological Science 39:18541861.CrossRefGoogle Scholar
Lyman, R. L. 2012b. Human-behavioral and paleoecological implications of terminal Pleistocene fox remains at the Marmes site (45FR50), eastern Washington State, USA. Quaternary Science Reviews 41:3948.CrossRefGoogle Scholar
Lyman, R. L. 2013. Paleoindian exploitation of mammals in eastern Washington State. American Antiquity 78 (in press).CrossRefGoogle Scholar
Lyons, S. K., Smith, F. A., and Brown, J. H. 2004. Of mice, mastodons and men: human-mediated extinctions on four continents. Evolutionary Ecology Research 6:339358.Google Scholar
Lyons, S. K., Wagner, P. J., and Dzikiewicz, K. 2010. Ecological correlates of range shifts of late Pleistocene mammals. Philosophical Transactions of the Royal Society of London B 365:36813693.CrossRefGoogle ScholarPubMed
MacArthur, R. H. 1965. Patterns of species diversity. Biological Reviews 40:510533.CrossRefGoogle Scholar
Manly, B. F. J. 1996. Are there clumps in body-size distributions? Ecology 77:8186.CrossRefGoogle Scholar
Maser, C., and Storm, R. M. 1970. A key to Microtinae of the Pacific Northwest (Oregon, Washington, Idaho). Oregon State University Bookstore, Corvallis.Google Scholar
McGuire, J. L. 2011. Identifying California Microtus species using geometric morphometrics documents Quaternary geographic range contractions. Journal of Mammalogy 92:13831394.CrossRefGoogle Scholar
McNab, B. K. 1990. The physiological significance of body size. Pp. 1124in Damuth and MacFadden 1990.Google Scholar
McNab, B. K. 2010. Geographic and temporal correlations of mammalian size reconsidered: a resource rule. Oecologia 164:1323.CrossRefGoogle ScholarPubMed
Mehringer, P. J. Jr. 1996. Columbia River Basin ecosystems: Late Quaternary environments. Report on file, USDA Forest Service, Interior Columbia Basin Ecosystem Management Project, Walla Walla, Wash.Google Scholar
Millien, V., Lyons, S. K., Olson, L., Smith, F. A., Wilson, A. B., and Yom-Tov, Y. 2006. Ecotypic variation in the context of global climate change: revisiting the rules. Ecology Letters 9:853869.CrossRefGoogle ScholarPubMed
Paradiso, J. L., and Manville, R. H. 1961. Taxonomic notes on the tundra vole (Microtus oeconomus) in Alaska. Proceedings of the Biological Society of Washington 74:7792.Google Scholar
Reed, A. W., Kaufman, G. A., and Kaufman, D. W. 2006. Species richness–productivity relationship for small mammals along a desert–grassland continuum: differential responses of functional groups. Journal of Mammalogy 87:777783.CrossRefGoogle Scholar
Rodríguez, J. 1999. Use of cenograms in mammalian palaeoecology: a critical review. Lethaia 32:331347.CrossRefGoogle Scholar
Russell, R. J. 1968. Evolution and classification of the pocket gophers of the subfamily Geomyinae. University of Kansas Museum of Natural History Publications 16:473579.Google Scholar
Sargeant, A. B., Allen, S. H., and Hastings, J. O. 1987. Spatial relations between sympatric coyotes and red foxes in North Dakota. Journal of Wildlife Management 51:285293.CrossRefGoogle Scholar
Semken, H. A., and Wallace, S. C. 2002. Key to Arvicoline (“Microtine” rodents) and Arvicoline-like lower first molars recovered from Late Wisconsinan and Holocene archaeological and palaeontological sites in eastern North America. Journal of Archaeological Science 29:2331.CrossRefGoogle Scholar
Shafer, A. B. A., Cullingham, C. I., Côté, S. D., and Coltman, D. W. 2010. Of glaciers and refugia: a decade of study sheds new light on the phylogeography of northwestern North America. Molecular Ecology 19:45894621.CrossRefGoogle ScholarPubMed
Shakun, J. D., and Carlson, A. E. 2010. A global perspective on last glacial maximum to Holocene climate change. Quaternary Science Reviews 29:18011806.CrossRefGoogle Scholar
Siemann, E., and Brown, J. H. 1999. Gaps in mammalian body size distributions reexamined. Ecology 80:27882792.CrossRefGoogle Scholar
Smith, F. A., and Boyer, A. B. 2012. Losing time? Incorporating a deeper temporal perspective into modern ecology. Frontiers of Biogeography 4:2639.CrossRefGoogle Scholar
Smith, F. A., and Lyons, S. K. 2011. How big should a mammal be? A macroecological look at mammalian body size over space and time. Philosophical Transactions of the Royal Society of London B 366:23642378.CrossRefGoogle Scholar
Smith, F. A., Lyons, S. K., Ernest, S. K. M., Jones, K. E., Kaufman, D. M., Dayan, T., Marquet, P. A., Brown, J. H., and Haskell, J. P. 2003. Body mass of Late Quaternary mammals. Ecology 84:3403.CrossRefGoogle Scholar
Stegner, M. A., and Holmes, M. 2013. Using paleontological data to assess mammalian community structure: potential aid in conservation planning. Palaeogeography, Palaeoclimatology, Palaeoecology (in press).CrossRefGoogle Scholar
Storer, J. E. 2003. Environments of Pleistocene Beringia: analysis of faunal composition using cenograms. Deinsea 9:405414.Google Scholar
Travouillon, K. J., and Legendre, S. 2009. Using cenograms to investigate gaps in mammalian body mass distributions in Australian mammals. Palaeogeography, Palaeoclimatology, Palaeoecology 272:6984.CrossRefGoogle Scholar
Valverde, J. A. 1964. Remarques sur la structure et l'évolution des communautés de vertébrés terrestres. 1. Structure d'une communauté. 2. Rapport entre prédateurs et proies. La Terre et la Vie 111:121154.Google Scholar
Vander Haegen, W. M., McCorquodale, S. M., Peterson, C. R., Green, G. A., and Yensen, E. 2001. Wildlife of eastside shrubland and grassland habitats. Pp. 292316inJohnson, D. H. and O'Neill, T. A., eds. Wildlife-habitat relationships in Oregon and Washington. Oregon State University Press, Corvallis.Google Scholar
Verts, B. J., and Carraway, L. N. 1998. Land mammals of Oregon. University of California Press, Berkeley.Google Scholar
Voigt, D. R. 1987. Red fox. Pp. 379392inNovak, M., Baker, J. A., Obbard, M. E., and Malloch, B., eds. Wild furbearer management and conservation in North America. Ontario Ministry of Natural Resources, Toronto.Google Scholar