Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-15T16:29:54.100Z Has data issue: false hasContentIssue false

Temperature and extinction in the sea: a physiologist's view

Published online by Cambridge University Press:  08 February 2016

Andrew Clarke*
Affiliation:
British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom

Abstract

Climatic change has long been regarded as an important factor in evolutionary history. In particular, periods of enhanced extinction in marine taxa (especially those from warmer waters) have frequently been linked to decreases in seawater temperature. Studies of the physiology of marine invertebrates and fish alive today have revealed well-developed abilities to cope with temperature change, and there would thus appear to be a dichotomy between the rates of temperature change associated with extinction in geological history and the very much faster rates (by several orders of magnitude) with which many marine organisms can cope today. Nevertheless, evidence from ecology and biogeography indicates that temperature, or some temperature-associated factor, does play a significant role in determining the limits to performance, and hence distribution. The resolution of the dichotomy between the evidence from paleontology and physiology may come through a consideration of the role of the previous evolutionary history of the fauna, the influence of sudden temperature events, or the impact of climatic change on individual competitive ability, community structure, and ecosystem functioning. Studies of the energetics of marine invertebrates in relation to temperature and the evolutionary history of polar faunas indicate that we should beware of anthropocentric judgements in attempting to understand the role of climatic change in evolutionary history, and be critical in distinguishing the role of temperature per se from temperature-associated ecological factors. Present evidence suggests that climatic change in the sea, at least at the rates currently believed to be typical, is unlikely to cause extinction by direct physiological impact. It is more likely that extinction is caused by ecological factors; temperature change is thus only one of several factors that may promote those ecological changes that are currently the best candidates for the proximate cause of extinction in the sea.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abbott, I. A., and North, W. J. 1972. Temperature influences on floral composition in California coastal waters. Pp. 7279In Nisizawa, K., ed. Proceedings of the Seventh International Seaweed Symposium. University of Tokyo Press, Tokyo.Google Scholar
Arntz, W. E., and Fahrbach, E. 1991. El Niño. Klimaexperiment der Natur: die physikalischen Ursachen und biologischen Folgen. Birkhäuser Verlag; Basel, Switzerland.Google Scholar
Arntz, W. E., Brey, T., Tarazona, J., and Robles, A. 1987. Changes in the structure of a shallow sandy-beach community in Peru during an El Niño event. Pp. 645658In Payne, A. I. L., Gulland, J. A., and Brink, K. H., eds. The Benguela and comparable ecosystems. South African Journal of Marine Science 5.Google Scholar
Bennett, K. D. 1990. Milankovitch cycles and their effects on species in ecological and evolutionary time. Paleobiology 16:1121.CrossRefGoogle Scholar
Blegvad, H. 1929. Mortality among animals of the littoral region in ice winters. Report of the Danish Biological Station 35:4962.Google Scholar
Brenchley, P. J., ed. 1984. Fossils and climate. John Wiley, Chichester, England.Google Scholar
Brenchley, P. J., ed. 1989. The late Ordovician extinction. Pp. 104132In Donovan, S. K., ed. Mass extinctions: processes and evidence. Belhaven Press, London.Google Scholar
Carter, J. G. 1980. Environmental and biological controls of bivalve shell mineralogy and microstructure. Pp. 69132In Rhoads, D. C. and Lutz, R. A., eds. Skeletal growth of aquatic organisms. Plenum, New York.CrossRefGoogle Scholar
Christiansen, F. B., and Fenchel, T. M. 1979. Evolution of marine invertebrate reproductive patterns. Theoretical Population Biology 16:267282.CrossRefGoogle Scholar
Clarke, A. 1983. Life in cold water: the physiological ecology of polar marine ectotherms. Oceanography and Marine Biology: an Annual Review 21:341453.Google Scholar
Clarke, A. 1988. Seasonality in the Antarctic marine environment. Comparative Biochemistry and Physiology 90B:461473.Google Scholar
Clarke, A. 1990. Temperature and evolution: Southern Ocean cooling and the Antarctic marine fauna. Pp. 922In Kerry, K. R. and Hempel, G., eds. Antarctic ecosystems: change and conservation. Springer, Berlin.CrossRefGoogle Scholar
Clarke, A. 1991. What is cold adaptation and how should we measure it? American Zoologist 31:8192.CrossRefGoogle Scholar
Clarke, A. 1993. Reproduction in the cold: Thorson revisited. Invertebrate Reproduction and Development 22:175183.CrossRefGoogle Scholar
Clarke, A., and Crame, J. A. 1989. The origin of the Southern Ocean marine fauna. Pp. 253268In Crame, J. A., ed. Origins and evolution of the Antarctic Biota. Geological Society Special Publication No. 47. The Geological Society, London.Google Scholar
Clarke, A., and Crame, J. A. 1992. The Southern Ocean benthic fauna and climate change: a historical perspective. Philosophical Transactions of the Royal Society, Series B 338:299309.Google Scholar
Cossins, A. R., and Bowler, K. 1987. Temperature biology of animals. Chapman and Hall, London.CrossRefGoogle Scholar
Crame, J. A. 1992. Evolutionary history of the polar regions. Historical Biology 6:3760.CrossRefGoogle Scholar
Crisp, D. J. 1964. The effects of the severe winter of 1962–63 on marine life in Britain. Journal of Animal Ecology 33:165210.CrossRefGoogle Scholar
Day, R., and McEdward, L. 1984. Aspects of the physiology and ecology of pelagic larvae of marine benthic invertebrates. Pp. 93120In Steidinger, K. A. and Walker, L. M., eds. Marine plankton life cycle strategies. CRC Press, Boca Raton, Fla.Google Scholar
Deer, W. A., Howie, R. A., and Zussman, J. 1966. An introduction to the rock forming minerals. Longman, London.Google Scholar
Detrich, H. W. III, Johnson, K. A., and Marchese-Ragona, S. P. 1989. Polymerisation of Antarctic fish tubulins at low temperature: energetic aspects. Biochemistry 28:1008510097.CrossRefGoogle ScholarPubMed
Donovan, S. K., ed. 1989. Mass extinctions: processes and evidence. Behhaven Press, London.Google Scholar
Feder, M. E. 1987. The analysis of physiological diversity: the prospects for pattern documentation and general questions in ecological physiology. Pp. 3870In Feder, M. E., Bennett, A. F., Burggren, W. W., and Huey, R. B., eds. New directions in ecological physiology. Cambridge University Press, Cambridge.Google Scholar
Foster, R. J. 1974. Eocene echinoids and the Drake Passage. Nature (London) 249:751.CrossRefGoogle Scholar
Franks, F. 1985. Biophysics and biochemistry at low temperature. Cambridge University Press, Cambridge.Google Scholar
Furnes, G. K. 1992. Climatic variations in oceanographic processes in the north European seas: a review of the 1970s and 1980s. Continental Shelf Research 12:235256.CrossRefGoogle Scholar
Graus, R. R. 1974. Latitudinal trends in shell characteristics of marine gastropods. Lethaia 7:303314.CrossRefGoogle Scholar
Hansen, T. A. 1987. Extinction of late Eocene to Oligocene molluscs: relationships to shelf area, temperature changes, and impact event. Palaios 2:6975.CrossRefGoogle Scholar
Hawkins, A. J. S. 1991. Protein turnover: a functional appraisal. Functional Ecology 5:222233.CrossRefGoogle Scholar
Hazel, J. R., Garlich, W. S., and Sellner, P. A. 1978. The effect of assay temperature on the pH optima of enzymes from poikilotherms: a test of the imidazole alphastat hypothesis. Journal of Comparative Physiology 123:97104.CrossRefGoogle Scholar
Hedgpeth, J. W. 1957. Marine biogeography. Pp. 359382In Hedgpeth, J. W., ed. Treatise on marine ecology and paleoecology, vol. 1. Geological Society of America Memoir 67.Google Scholar
Herbert, T. D., and Fischer, A. G. 1986. Milankovitch climatic origin of mid-Cretaceous black shale rhythms in central Italy. Nature (London) 321:739743.CrossRefGoogle Scholar
Hochachka, P. W., and Somero, G. N. 1984. Biochemical adaptation. Princeton University Press, Princeton, New Jersey.CrossRefGoogle Scholar
Houbrick, R. S. 1991. Functional inference from gastropod shell morphology—some caveats. Lethaia 24:265270.CrossRefGoogle Scholar
Hubbard, A. E., and Gilinsky, N. L. 1992. Mass extinction as statistical phenomena: an examination of the evidence using X2 tests and bootstrapping. Paleobiology 18:148160.CrossRefGoogle Scholar
Jablonski, D. 1986. Background and mass extinctions: the alternation of macroevolutionary regimes. Science 231:129133.CrossRefGoogle ScholarPubMed
Jablonski, D., and Lutz, R. A. 1983. Larval ecology of marine benthic invertebrates: palaeobiological implications. Biological Reviews 58:2190.CrossRefGoogle Scholar
Johnston, I. A. 1988. Antarctic fish muscle—structure, function and physiology. Antarctic Science 1:97108.CrossRefGoogle Scholar
Johnston, I. A., Johnson, T. P., and Battram, J. C. 1991. Low temperature limits burst performance in Antarctic fish. Pp. 179190In di Prisco, G., Maresca, B., and Tota, B., eds. Biology of Antarctic fish. Springer, Berlin.CrossRefGoogle Scholar
Kennett, J. P. 1977. Cenozoic evolution of Antarctic glaciation, the circum-Antarctic Ocean, and their impact on global palaeoceanography. Journal of Geophysical Research 82:38433860.CrossRefGoogle Scholar
Kennett, J. P., and Stott, L. D. 1991. Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature (London) 353:225229.CrossRefGoogle Scholar
Koehn, R. K. 1991. The cost of enzyme synthesis in the genetics of energy balance and physiological performance. Biological Journal of the Linnean Society 44:231247.CrossRefGoogle Scholar
Lehman, S. J., and Keigwin, L. D. 1992. Sudden changes in North Atlantic circulation during the last deglaciation. Nature (London) 356:757762.CrossRefGoogle Scholar
Lima, G. M., and Lutz, R. A. 1990. The relationship of larval shell morphology to mode of development in marine prosobranch gastropods. Journal of the Marine Biological Association of the United Kingdom 70:611637.CrossRefGoogle Scholar
Lorius, C. J., Jouzel, J., Raynaud, D., Hansen, J., and Le Treut, H. 1990. The ice-core record: climate sensitivity and future green-house warming. Nature (London) 347:139145.CrossRefGoogle Scholar
Macdonald, J. A. 1981. Temperature compensation in the peripheral nervous system: Antarctic vs. temperate poikilotherms. Journal of Comparative Physiology 142:411418.CrossRefGoogle Scholar
Macdonald, J. A., and Wells, R. M. G. 1991. Viscosity of body fluids from Antarctic notothenioid fish. Pp. 163178In di Prisco, G., Maresca, B., and Tota, B., eds. Biology of Antarctic fish. Springer, Berlin.CrossRefGoogle Scholar
Mayer, A. G. 1914. The effects of temperature on tropical marine animals. Papers from the Tortugas Laboratory 6(1):124.Google Scholar
Moore, H. B. 1958. Marine ecology. John Wiley, London.Google Scholar
Newell, I. M. 1948. Marine molluscan provinces of western North America: a critique and a new analysis. Proceedings of the American Philosophical Society 92:155166.Google Scholar
Newman, W. A. 1979. Californian transition zone: significance of short-range endemics. Pp. 399416In Grey, J. and Boucot, A., eds. Historical biogeography, plate tectonics, and the changing environment. 37th Annual Biology Colloquium, Corvallis. Oregon State University Press, Corvallis.Google Scholar
Nicol, D. 1967. Some characteristics of cold-water marine pelecypods. Journal of Paleontology 41:13301340.Google Scholar
Pain, R. H. 1987. Temperature and macromolecular structure and function. Pp. 2133In Bowler, K. and Fuller, R. G., eds. Temperature and animal cells. Society for Experimental Biology. Cambridge University Press, Cambridge.Google Scholar
Pearse, J. S., McClintock, J. B., and Bosch, I. 1991. Reproduction of Antarctic benthic invertebrates: tempos, modes, and timing. American Zoologist 31:6580.CrossRefGoogle Scholar
Pimm, S. L. 1991. The balance of nature? The University of Chicago Press, Chicago.Google Scholar
Place, A. R. and Powers, D. A. 1979. Genetic variation and relative catalytic efficiencies: lactate dehydrogenase B allozymes of Fundulus heteroclitus. Proceedings of the National Academy of Sciences, U.S.A. 76:23542358.CrossRefGoogle ScholarPubMed
Powers, D. A., Ropson, I., Brown, D. C., Van Beneden, R., Cashon, R., Gonzalez-Villasenor, L. I., and Dimichele, L. 1986. Genetic variation in Fundulus heteroclitus: geographical distribution. American Zoologist 26:131144.CrossRefGoogle Scholar
Prothero, D. R. 1989. Stepwise extinctions and climatic decline during the later Eocene and Oligocene. Pp. 217234In Donovan, S. K., ed. Mass extinctions: processes and evidence. Belhaven Press, London.Google Scholar
Prothero, D. R., and Berggren, W. A., eds. 1992. Eocene–Oligocene climatic and biotic evolution. Princeton University Press, Princeton.CrossRefGoogle Scholar
Raup, D. M. 1991. A kill curve for Phanerozoic marine species. Paleobiology 17:3748.CrossRefGoogle ScholarPubMed
Rosen, B. R. 1984. Reef coral biogeography and climate through the late Cainozoic: just islands in the sun or a critical pattern of islands? Pp. 201262in Brenchley 1984.Google Scholar
Schopf, T. J. M. 1984. Climate is only half the story in the evolution of organisms through time. Pp. 279289in Brenchley 1984.Google Scholar
Sidell, B. D., Johnston, I. A., Moerland, T. S., and Goldspink, G. 1983. The eurythermal myofibrillar protein complex of the mummichog (Fundulus heteroclitus): adaptation to a fluctuating thermal environment. Journal of Comparative Physiology 153:167173.CrossRefGoogle Scholar
Smidt, E. 1944. The effect of ice winters on marine littoral faunas. Folia Geographica Danica 2:136.Google Scholar
Snyder, G. K., and Weathers, W. W. 1975. Temperature adaptations in amphibians. American Naturalist 109:93101.CrossRefGoogle Scholar
Somero, G. N., and DeVries, A. L. 1967. Temperature tolerance of some Antarctic fishes. Science 156:257258.CrossRefGoogle ScholarPubMed
Stanley, S. M. 1984a. Marine mass extinctions: a dominant role for temperature. Pp. 69117In Nitecki, M. H., ed. Extinctions. University of Chicago Press, Chicago.Google Scholar
Stanley, S. M. 1984b. Temperature and biotic crises in the marine realm. Geology 12:205208.2.0.CO;2>CrossRefGoogle Scholar
Stanley, S. M. 1986. Anatomy of a recent regional mass extinction: Plio-Pleistocene decimation of the western Atlantic bivalve fauna. Palaios 1:1736.CrossRefGoogle Scholar
Stanley, S. M. 1987. Extinction. Scientific American Books, New York.Google Scholar
Stanley, F. G., and Wells, J. W. 1971. Diversity and age patterns in hermatypic corals. Systematic Zoology 20:115126.Google Scholar
Strong, A. E. 1989. Greater global warming revealed by satellite-derived sea-surface-temperature trends. Nature (London) 338:642645.CrossRefGoogle Scholar
Taylor, J. D., and Taylor, C. N. 1977. Latitudinal distribution of predatory gastropods on the eastern Atlantic shelf. Journal of Biogeography 4:7381.CrossRefGoogle Scholar
Thorson, G. 1950. Reproductive and larval ecology of marine bottom invertebrates. Biological Reviews 25:145.CrossRefGoogle ScholarPubMed
Valentine, J. W. 1966. Numerical analysis of marine molluscan ranges on the extratropical northeastern Pacific Shelf. Limnology and Oceanography 11:198211.CrossRefGoogle Scholar
Valentine, J. W. 1984a. Climate and evolution in the shallow sea. Pp. 265277in Brenchley 1984.Google Scholar
Valentine, J. W. 1984b. Neogene marine climate trends: implications for biogeography and evolution of shallow-sea biota. Geology 12:647650.2.0.CO;2>CrossRefGoogle Scholar
Van Valen, L. 1973. A new evolutionary law. Evolutionary Theory 1:118.Google Scholar
Vance, R. R. 1973a. On reproductive strategies in marine benthic invertebrates. American Naturalist 107:339352.CrossRefGoogle Scholar
Vance, R. R. 1973b. More on reproductive strategies in marine benthic invertebrates. American Naturalist 107:353361.CrossRefGoogle Scholar
Vermeij, G. J. 1978. Biogeography and adaptation: patterns of marine life. Harvard University Press; Cambridge, Massachusetts.Google Scholar
Vermeij, G. J. 1987. Evolution and escalation: an ecological history of life. Princeton University Press Princeton, New Jersey.CrossRefGoogle Scholar
Ziegelmeier, E. 1964. Einwirkungen des katten Winters 1962/63 auf des Makrobenthos im Ostteil der Deutschen Bucht. Helgoländer wissenschaften Meeresunterschung 10:276282.CrossRefGoogle Scholar
Ziegelmeier, E. 1970. Über Massenvorkommen verschiedene makrobenthaler Wirbelloser während der Wiederbesiedlungsphase nach Schädigungen durch “katastrophale” Umwelteinflüsse. Helgoländer wissenschaften Meeresunterschung 21:920.CrossRefGoogle Scholar
Zinsmeister, W. J. 1982. Review of the Upper Cretaceous-Lower Tertiary sequence on Seymour Island, Antarctica. Journal of the Geological Society, London 139:779786.CrossRefGoogle Scholar