Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-13T15:46:14.800Z Has data issue: false hasContentIssue false

A theoretical morphologic analysis of bivalve ligaments

Published online by Cambridge University Press:  08 April 2016

Takao Ubukata*
Affiliation:
Institute of Geosciences, Shizuoka University, Oya 836, Shizuoka 422-8529, Japan. E-mail: sbtubuk@ipc.shizuoka.ac.jp

Abstract

A theoretical morphologic model defining ligament formation in the Bivalvia is introduced. It is based on the spacing of a lamellar layer, the spacing of a fibrous layer, and the relative growth rate of the expanding ligament with respect to enlargement of the ligamental area. Most of the diverse patterns of bivalve ligaments are successfully modeled by computer simulations. Wide intraspecific variation of the ligamental pattern is observed in an arcid species, Tegillarca granosa. This appears to be a consequence of allometric change of morphogenetic parameters during growth, adjusted to maintain the relationship between ligament strength and shell weight. The distribution of actual ligaments, which does not fill the theoretical morphospace, shows potential evolutionary pathways of bivalve ligaments. Thus, it implies phylogenetic relationships between ligament types from the viewpoint of pattern formation.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ackerly, S. C. 1989. Kinematics of accretionary shell growth, with examples from brachiopods and molluscs. Paleobiology 4:374378.Google Scholar
Alexander, R. M. 1966. Rubber-like properties of the inner hinge-ligament of Pectinidae. Journal of Experimental Biology 44:119130.Google Scholar
Carter, J. G. 1990. Evolutionary significance of shell microstructure in the Palaeotaxodonta, Pteriomorphia and Isofilibranchia (Bivalvia: Mollusca). Pp. 135296in Carter, J. G., ed. Skeletal biomineralization: pattern, process and evolutionary trends, Vol. 1. Van Nostrand, New York.Google Scholar
Hayami, I. 1965. Lower Cretaceous marine pelecypods of Japan, Part I. Memoirs of the Faculty of Science, Kyushu University, D 15:221349.Google Scholar
Hayami, I., and Matsukuma, A. 1970. Variation of bivariate characters from the standpoint of allometry. Palaeontology 13:588605.Google Scholar
Jefferies, R. P. S., and Minton, P. 1965. The mode of life of two Jurassic species of ‘Posidonia’ (Bivalvia). Journal of Paleontology 62:156185.Google Scholar
Kondo, S., and Asai, R. 1995. A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus. Nature 376:765768.Google Scholar
Matsukuma, A. 2000. Higher taxonomy of the Bivalvia: the present and the future. Kaiyo Monthly, Special Volume 20:96105. [In Japanese.]Google Scholar
Meinhardt, H., and Klingler, M. 1987. A model for pattern formation on the shell of molluscs. Journal of Theoretical Biology 126:6389.Google Scholar
Morris, N. J. 1979. On the origin of the Bivalvia. In House, M. R., ed. The origin of major invertebrate groups. Systematics Association Special Volume 12:381413. Academic Press, New York.Google Scholar
Murray, J. D. 1981. A pre-pattern formation mechanism for animal coat markings. Journal of Theoretical Biology 88:161199.Google Scholar
Newell, N. D., and Boyd, D. W. 1987. Iteration of ligament structures in Pteriomorphian bivalves. American Museum Novitates 2875:111.Google Scholar
Okamoto, T. 1988. Analysis of heteromorph ammonoids by differential geometry. Palaeontology 31:3552.Google Scholar
Owen, G., Trueman, E. R., and Yonge, C. M. 1953. The ligament in the Lamellibranchia. Nature 171:7375.Google Scholar
Pojeta, J. Jr. 1978. The origin and early taxonomic diversification of pelecypods. Philosophical Transactions of the Royal Society of London B 284:225246.Google Scholar
Runnegar, B. 1983. Molluscan phylogeny revisited. Memoirs of the Association of Australasian Paleontologists 1:121144.Google Scholar
Savazzi, E. 1998. The colour patterns of cypraeid gastropods. Lethaia 31:1527.Google Scholar
Seilacher, A. 1970. Arbeitskonzept zur Konstruktions-Morphologie. Lethaia 3:393396.Google Scholar
Seilacher, A. 1973. Fabricational noise in adaptive morphology. Systematic Zoology 22:451465.Google Scholar
Seilacher, A. 1981. Konstruktionsmorphologie von Muschelgehäusen. In Reif, W.-E., ed. Funktionsmorphologie. Paläontologische Kursbücher 1:173186. Paläontologische Gesellschaft, Munich.Google Scholar
Seilacher, A. 1984. Constructional morphology of bivalves: evolutionary pathways in primary versus secondary soft-bottom dwellers. Palaeontology 27:207237.Google Scholar
Tevesz, M. J. S. 1977. Taxonomy and ecology of the Philobryidae and Limopsidae (Mollusca: Pelecypoda). Postilla 171:164.Google Scholar
Thomas, R. D. K. 1975. Functional morphology, ecology, and evolutionary conservatism in the Glycymerididae (Bivalvia). Palaeontology 18:217254.Google Scholar
Thomas, R. D. K. 1976. Constraints of ligament growth, form and function on evolution in the Arcoida (Mollusca: Bivalvia). Paleobiology 2:6483.Google Scholar
Thomas, R. D. K. 1978a. Limits to opportunism in the evolution of the Arcoida (Bivalvia). Philosophical Transactions of the Royal Society of London B 284:335344.Google Scholar
Thomas, R. D. K. 1978b. Shell form and the ecological range of living and extinct Arcoida. Paleobiology 4:181194.Google Scholar
Thomas, R. D. K., Madzvamuse, A., Maini, P. K., and Wathen, A. J. 2000. Growth patterns of noetiid ligaments: implications of developmental models for the origin of an evolutionary novelty among arcoid bivalves. Pp. 279289in Harper, E. M., Taylor, J. D., and Crame, J. A., eds. The evolutionary biology of the Bivalvia. Geological Society, London.Google Scholar
Trueman, E. R. 1964. Adaptive morphology in paleoecological interpretation. Pp. 4574in Imbrie, J. and Newell, N. D., eds. Approaches to paleoecology. Wiley, New York.Google Scholar
Trueman, E. R. 1969. Ligament. Pp. N58N64in Cox, L. R. et al. Mollusca 6, Bivalvia. Part N of Moore, R. C., ed. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colo., and University of Kansas, Lawrence.Google Scholar
Turing, A. M. 1952. The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London B 237:3772.Google Scholar
Ubukata, T. 1997. Mantle kinematics and formation of commarginal shell sculpture in Bivalvia. Paleontological Research 1:132143.Google Scholar
Ubukata, T. 2000. Theoretical morphology of hinge and shell form in Bivalvia: geometric constraints derived from space conflict between umbones. Paleobiology 26:606624.Google Scholar
Ubukata, T. 2001. Geometric pattern and growth rate of prismatic shell structures in Bivalvia. Paleontological Research 5:3344.Google Scholar
Ubukata, T., and Nakagawa, Y. 2000. On the origin of peculiar sculptural pattern of the Cretaceous bivalve Inoceramus hobetsensis. Lethaia 33:313329.Google Scholar
Waller, T. R. 1978. Morphology, morphoclines and a new classification of the Pteriomorphia (Mollusca: Bivalvia). Philosophical Transactions of the Royal Society of London B 284:345365.Google Scholar
Waller, T. R. 1986. The evolution of ligament systems in the Bivalvia. American Malacological Bulletin 4:111112.Google Scholar
Waller, T. R. 1990. The evolution of ligament systems in the Bivalvia. Pp. 4971in Morton, B., ed. The Bivalvia. Hong Kong University Press, Hong Kong.Google Scholar
Ward, L. W., and Waller, T. R. 1988. A new species of Pulvinites (Mollusca: Bivalvia) from the Upper Paleocene Paspotansa Member of the Aquia Formation in Virginia. Journal of Paleontology 62:5155.Google Scholar
Yonge, C. M. 1978. Significance of the ligament in the classification of the Bivalvia. Proceedings of the Royal Society of London B 202:231248.Google Scholar