Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-12T00:40:03.990Z Has data issue: false hasContentIssue false

Variability, evolutionary rates, and allometry in dwarfing lineages

Published online by Cambridge University Press:  08 April 2016

Larry G. Marshall
Affiliation:
Department of Geology, Field Museum of Natural History; Roosevelt Road at Lake Shore Drive, Chicago, Illinois 60605
Robert S. Corruccini
Affiliation:
Division of Physical Anthropology, Smithsonian Institution; Washington, D.C. 20560

Abstract

Evolutionary “dwarfism” or “nanism” is the phenomenon in which a significant decrease in mean body size of a lineage (an ancestral-descendant sequence of populations) occurs through time. A detailed analysis of several Late Quaternary dwarfed marsupial lineages from Australia is given. Based on linear tooth dimensions of the dwarfed lineages, four points are considered: 1) percent dwarfing; 2) evolutionary rates of change of tooth dimensions; 3) variation within lineages before and after dwarfing; and 4) several aspects of multivariate dental allometry. [The lineages include Macropus titan (fossil)—M. giganteus (Recent) and Osphranter cooperi (fossil)—O. robustus (Recent) in the family Macropodidae (kangaroos), and Sarcophilus laniarius (fossil)—S. harrisii (Recent) in the family Dasyuridae (Tasmaniandevil).]

Dental measurements led to these conclusions: 1) Species with the largest body size show the greatest size reduction, and the species with the smallest body size change the least. 2) Evolutionary rates for this reduction in Australian lineages are similar to comparable Post-Pleistocene dwarfed lineages in Europe. 3) Tooth width, especially posterior width, changes more rapidly than length. The first molar changes relatively slowly, especially in length. 4) Variability is higher in the dwarfed forms than in the larger ancestors. 5) Multivariate allometric rates of dwarfing are consistent with results for rates of change calculated in darwins for the relation between change in length and maximum width (and less so for the relation between M1 and M4 reduction). This pattern of dwarfing allometry is broadly similar to within-species allometry, and is quite dissimilar to synchronous interspecific allometry.

Brief consideration is also given to taxonomy of dwarfing lineages and to problems of concurrent megafaunal extinctions. It is concluded that dwarfism is an adaptive process which is probably the result of a density-dependent factor(s) (i.e. a resource limited system).

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adé, B. 1954. Le nanism racial. Arch. Suisses d'Anthro. Generale, 19:118.Google Scholar
Bader, R. S. 1955. Variability and evolutionary rates in the oreodonts. Evolution. 9:119140.Google Scholar
Bartholomai, A. 1971. Morphology and variation of the cheek teeth in Macropus giganteus Shaw and Macropus agilis (Gould). Mem. Qd Mus., 16:118.Google Scholar
Berry, R. J. 1975. Islands and the evolution of Microtus arvalis (Microtinae). J. Zool. London. 177:395409.Google Scholar
Bonner, J. T. B. 1968. Size change in development and evolution. J. Paleontol. 42(5):115.Google Scholar
Boucot, A. J. 1976. Rates of size increase and phyletic evolution. Nature. 261:694696.Google Scholar
Corbet, G. B. 1970. Patterns of subspecific variation. Symp. Zool. Soc. London. 26:105116.Google Scholar
Delaney, M. J. 1970. Variation and ecology of island populations of the long-tailed field mouse (Apodemus sylvaticus (L.)). Symp. Zool. Soc. London. 26:283295.Google Scholar
Edwards, W. E. 1967. The Late Pleistocene extinction and diminution in size of many mammalian species. Pp. 141154. In: Martin, P. S. and Wright, H. E. Jr., eds. Pleistocene Extinctions, the Search for a Cause. 453 pp.Yale Univ. Press; New Haven, Connecticut.Google Scholar
Falconer, D. S. 1960. Introduction to Quantitative Genetics. Ronald Press; New York.Google Scholar
Festing, F. W. 1976. Phenotypic variability of inbred and outbred mice. Nature. 263:230232.Google Scholar
Foster, J. B. 1964. Evolution of mammals on islands. Nature. 202:234235.Google Scholar
Foster, J. B. 1965. The evolution of the mammals on the Queen Charlotte Islands, British Columbia. Brit. Columbia, Prov. Mus. Occas. Pap. 14:1130.Google Scholar
Gingerich, P. D. 1974. Size variability of the teeth in living mammals and the diagnosis of closely related sympatric fossil species. J. Paleontol. 48(5):895903.Google Scholar
Gould, S. J. 1966. Allometry and size in ontogeny and phylogeny. Biol. Rev. 41:587640.CrossRefGoogle ScholarPubMed
Gould, S. J. 1971. Geometric similarity in allometric growth: a contribution to the problem of scaling in the evolution of size. Am. Nat. 105:113136.Google Scholar
Gould, S. J. 1975. On the scaling of tooth size in mammals. Am. Zool. 15:351362.Google Scholar
Guilday, J. E. 1967. Differential extinction during the Late-Pleistocene and Recent times. Pp. 121140. In: Martin, P. S. and Wright, H. E. Jr., eds. Pleistocene Extinctions: the Search for a Cause. Yale Univ. Press; New Haven, Connecticut.Google Scholar
Haldane, J. B. S. 1949. Suggestions as to quantitative measurement of rates of evolution. Evolution. 3:5156.Google Scholar
Hallam, A. 1975. Evolutionary size increase and longevity in Jurassic bivalves and ammonites. Nature. 258:493496.Google Scholar
Harris, A. H. and Mundel, P. 1974. Size reduction in bighorn sheep (Ovis canadensis) at the close of the Pleistocene. J. Mammal. 55:678680.Google Scholar
Hooijer, D. A. 1947. Pleistocene remains of Panthera tigris (Linnaeus) subspecies from Wanhsien, Szechwan China, compared with fossil and Recent tigers from other localities. Am. Mus. Novit. 1346:117.Google Scholar
Hooijer, D. A. 1950. The study of subspecific advances in the Quaternary. Evolution. 4:360361.Google Scholar
Hooijer, D. A. 1967. Indo-Australian insular elephants. Genetica. 38:143162.Google Scholar
Hopkins, J. S. 1966. Some considerations in multivariate allometry. Biometrics. 22:747760.Google Scholar
Huxley, J. S. 1932. Problems of Relative Growth. 276 pp. Methuen; London.Google Scholar
Jolicoeur, P. 1963a. The multivariate generalization of the allometry equation. Biometrics. 19:497499.Google Scholar
Jolicoeur, P. 1963b. The degree of generality of robustness in Martes americana. Growth. 27:127.Google Scholar
Jones, R. 1968. The geographical background to the arrival of man in Australia and Tasmania. Arch. Phys. Anthropol. Oceania. 3(3):186215.Google Scholar
Jones, R. 1975. The Neolithic, Palaeolithic and the Hunting Gardeners: man and land in the Antipodes. Quaternary Studies, R. Soc. New Zealand. 1975:2134.Google Scholar
Kellogg, D. E. and Hays, J. D. 1975. Microevolutionary patterns in Late Cenozoic Radiolaria. Paleobiology. 1:150160.Google Scholar
Kurtén, B. 1959. Rates of evolution in fossil mammals. Cold Spring Harbor Symp. on Quant. Biol. 34:205215.Google Scholar
Kurtén, B. 1965a. The carnivora of the Palestine caves. Acta Zool. Fenn. 107:174.Google Scholar
Kurtén, B. 1965b. On the evolution of the European wild cat, Felis silvestris Schreber. Acta Zool. Fenn. 111:126.Google Scholar
Kurtén, B. 1965c. The Pleistocene Felidae of Florida. Bull. Florida State Mus. 9(6):215273.Google Scholar
Kurtén, B. 1968. Pleistocene Mammals of Europe. 317 pp. Aldine Publ. Co.; Chicago, Illinois.Google Scholar
Lande, R. 1976. Natural selection and random genetic drift in phenotypic evolution. Evolution. 30:314334.CrossRefGoogle ScholarPubMed
Lerman, A. 1965. On rates of evolution of unit characters and character complexes. Evolution. 19:1625.Google Scholar
Levins, R. 1968. Evolution in Changing Environments. 120 pp. Princeton Univ. Press; Princeton, New Jersey.Google Scholar
Lodge, G. A. and Lamming, G. E. 1967. Growth and Development of Mammals. 527 pp. Plenum Press; New York.Google Scholar
Lydekker, R. 1887. Catalogue of fossil marsupials in the British Museum (Nat. Hist.), Pt. 5, Marsupialia. London. Pp. 146295.Google Scholar
Maglio, V. J. 1972. Evolution of mastication in the Elephantidae. Evolution. 26:638658.Google Scholar
Maglio, V. J. 1973. Origin and evolution of the Elephantidae. Trans. Am. Phil. Soc., N.S. 63(3):1149.CrossRefGoogle Scholar
Marshall, L. G. 1973a. Fossil vertebrate faunas from the Lake Victoria Region, S.W. New South Wales, Australia. Mem. Natl. Mus. Victoria 34:151172.Google Scholar
Marshall, L. G. 1973b. The Lake Victoria Local Fauna. Unpubl. MSc., thesis, Vols. I + II; Monash Univ., Monash, Australia.Google Scholar
Marshall, L. G. 1974. Late Pleistocene mammals from the “Keilor Cranium Site,” Southern Victoria, Australia. Mem. Natl. Mus. Victoria 35:6386.Google Scholar
Marshall, L. G. and Behrensmeyer, A. K.A review of evolutionary dwarfism. In preparation.Google Scholar
Marshall, L. G. and Hope, J. H. 1973. A reevaluation of Dasyurus bowlingi Spencer and Kershaw 1910 (Marsupialia, Dasyuridae) from King Island, Bass Strait. Proc. R. Soc. Victoria. 85(2):225236.Google Scholar
Mayr, E., Linsley, E. G., and Usinger, R. L. 1953. Methods and Principles of Systematic Zoology. 329 pp. McGraw-Hill; New York.Google Scholar
Mosimann, J. E. 1970. Size allometry: size and shape variables with characterizations of the lognormal and generalized gamma distributions. J. Am. Stat. Assoc. 65:930945.CrossRefGoogle Scholar
Pianka, E. R. 1974. Evolutionary Ecology. 356 pp. Harper and Row; New York.Google Scholar
Rosa, D. 1899. La Riduzione Progressiva della Variabilite a i suoi Rapporti Call'estinziene e Coll Origne delle Specie. Torino; Carlo Clausen.Google Scholar
Rosenzweig, M. L. 1968. The strategy of body size in mammalian carnivores. Am. Mus. Nat. 80:299315.Google Scholar
Schultz, C. B., Tanner, L. G., and Martin, L. D. 1972. Phyletic trends in certain lineages of Quaternary mammals. Bull. Univ. Nebraska State Mus. 9(6):183195.Google Scholar
Simpson, G. G. 1944. Tempo and Mode in Evolution. 237 pp. Columbia Univ. Press; New York.Google Scholar
Simpson, G. G. 1949. Rates of Evolution in Animals. Pp. 205228. In: Jepsen, G. L., Mayr, E., and Simpson, G. G., eds. Genetics, Paleontology and Evolution. 474 pp.Princeton Univ. Press; Princeton, New Jersey.Google Scholar
Simpson, G. G. 1953. The Major Features of Evolution. 434 pp. Columbia Univ. Press; New York.CrossRefGoogle Scholar
Sokal, R. R. and Sneath, H. A. 1963. Principles of Numerical Taxonomy. 359 pp. Freeman; San Francisco, California.Google Scholar
Sondaar, P. Y. 1977. Insularity and its effect on mammal evolution. Pp. 671707. In, Hecht, M. K., Goody, P. C. and Hecht, B. M., eds. Major Patterns of Vertebrate Evolution. 908 pp.Plenum Press; New York.Google Scholar
Sprent, P. 1972. The mathematics of size and shape. Biometrics. 28:2327.Google Scholar
Stanley, S. M. 1973. An explanation for Cope's Rule. Evolution. 27:126.Google Scholar
Stephenson, N. G. 1963. Growth gradients among fossil Monotremes and Marsupials. Palaeontology. 6(4):615624.Google Scholar
Suarez, B. K. and Williams, B. J. 1973. Relationship of crown size and shape in the maxillary dentition. J. Dent. Res. 52(3):636.Google Scholar
Sylvester-Bradley, P. C. 1958. The description of fossil populations. J. Paleontol. 32:214235.Google Scholar
Thaler, L. 1973. Nanisme et gigantisme insulaires. La Recherche. 4(37):741750.Google Scholar
Tongue, C. H. and MaCance, R. A. 1965. Severe undernutrition in growing and adult animals. Brit. J. Nat. 19:361372.Google Scholar
Tyndale-Biscoe, H. 1973. Life of Marsupials. 254 pp. Edward Arnold Publ. Ltd.; London.Google Scholar
Walvius, M. R. 1961. A discussion of size of red deer (Cervus elaphus) compared with Pleistocene specimens. Beaufortia. 9(97):7582.Google Scholar
Wassersug, R. J., Yang, H., Sepkoski, J. J. Jr., and Raup, D. M. 1978. The evolution of size on islands: a computer simulation. Am. Nat. In press.Google Scholar
Wen-Chung, P. 1963. On the problem of the change of body size in Quaternary Mammals. Sci. Sinica. 12:231235.Google Scholar
Wentzel, R. M. 1977. The Chacoan peccary Catagonus wagneri (Rusconi). Bull. Carnegie Mus. Nat. Hist. 3:136.CrossRefGoogle Scholar