Hostname: page-component-5c6d5d7d68-wpx84 Total loading time: 0 Render date: 2024-08-22T13:15:29.089Z Has data issue: false hasContentIssue false

Paleoecological Approaches to Analyzing Stratigraphic Sequences

Published online by Cambridge University Press:  26 July 2017

Robyn J. Burnham*
Affiliation:
Department of Botany KB-15, University of Washington, Seattle, Washington 98195
Get access

Extract

Stratigraphic successions provide basic data on past changes in the biosphere. The fossil record may reflect climatic, evolutionary or ecosystem alterations. Careful analysis of Mesozoic and Cenozoic stratigraphic sequences has provided a clearer picture of the diversity of early angiosperms (Doyle, 1978, 1984; Doyle and Hickey, 1976; Crane et al., 1986), their environments of deposition (Hickey and Doyle, 1977), the nature of plant response to Cretaceous-Tertiary boundary events (Wolfe, 1987), the changes in angiosperm fruit and seed sizes as correlated with the increase in forest dominance and changes in dispersal mode over time (Tiffney, 1984, 1986; Wing and Tiffney, 1987), and changes in floristic and physiognomic forest compositions correlated with climatic fluctuations (Leopold and MacGinitie, 1972; Wolfe, 1978, 1981b).

Type
Research Article
Copyright
Copyright © 1987 Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armentrout, J. M., 1981. Correlation and ages of Cenozoic chronostratigraphic units in Oregon and Washington. in Armentrout, J. M. (ed.), Geological Society of America Special Paper 184: 137148.Google Scholar
Belt, E. S., Flores, R. M., Warwick, P. D., Conway, K. M., Johnson, K. R., and Waskowitz, R. S., 1984. Relationship of fluviodeltaic facies to coal deposition in the Lower Fort Union Formation (Palaeocene), southwestern North Dakota. in Rahmani, R. A. and Flores, R. M. (eds.), Sedimentology of Coal and Coal-Bearing Sequences. Blackwell: Oxford. p. 177196.Google Scholar
Birks, H. H., 1973. Modern macrofossil assemblages in lake sediments in Minnesota. in Birks, H. J. B. (ed.), Quaternary Plant Ecology. Blackwell: Oxford. p. 173190.Google Scholar
Buckovic, W. A., 1979. The Eocene deltaic system of west-central Washington. in Armentrout, J. M., Cole, M. R., TerBest, H. Jr. (eds.), Cenozoic Paleogeography of the Western United States. Society of Economic Paleontologists and Mineralogists: Los Angeles. p. 147164.Google Scholar
Cheetham, A. H., and Hazel, J. E., 1969. Binary (presence-absence) similarity coefficients. Journal of Paleontology 43(5): 11301136.Google Scholar
Clampitt, C., 1985. Decorana. Doc. Department of Botany, University of Washington.Google Scholar
Coleman, J. M., 1976. Deltas. Processes of Deposition and Models for Exploration. Burgess: Minneapolis. 124p.Google Scholar
Coleman, J. M., and Gagliano, S. M., 1965. Sedimentary structures: Mississippi River deltaic plain. in Middleton, G. V. (ed.), Primary sedimentary structures and their hydrodynamic interpretation. Society of Economic Paleontologists and Mineralogists Sp. Publ. 12. p. 133148.CrossRefGoogle Scholar
Crane, P. R., and Stockey, R. A., 1985. Growth and reproductive biology of Joffrea speirsii gen et sp. nov., a Cercidiphyllum-1ike plant from the Late Paleocene of Alberta, Canada. Canadian Journal of Botany 63: 340364.Google Scholar
Crane, P. R., Friis, E. M., and Pedersen, K. R., 1986. Lower Cretaceous Angiosperm flowers: fossil evidence on early radiation of dicotyledons. Science 232: 852854.Google Scholar
Cross, A. T., and Taggert, R. E., 1982. Causes of short-term sequential changes in fossil plant assemblages: some considerations based on a Miocene flora of the northwest United States. Ann. Missouri Bot. Gard. 69: 676734.Google Scholar
Davis, J. C., 1973. Statistics and data analysis in geology. John Wiley: New York. 550p.Google Scholar
Doyle, J. A., 1978. Origin of Angiosperms. Ann. Rev. Ecol. Syst. 9: 365392.CrossRefGoogle Scholar
Doyle, J. A., 1984. Evolutionary, geographic and ecological aspects of the rise of Angiosperms. Proceedings 27th International Geological Congress 2: 2333.Google Scholar
Doyle, J. A., and Hickey, L. J., 1976. Pollen and leaves from the Mid-Cretaceous Potomac Group and their bearing on Early Angiosperm Evolution. in Beck, C. B., (ed.), Origin and Early Evolution of Angiosperms. Columbia University Press:New York. 139206.Google Scholar
Elliott, T., 1974. Interdistributary bay sequences and their genesis. Sedimentology 21: 611622.Google Scholar
Felsenstein, J., 1986. PHYLIP, package for inferring phylogenies. Department of Genetics, University of Washington.Google Scholar
Fielding, C. R., 1984a. Upper delta plain and fluviolacustrine facies from the Westphalian of the Durham coal field, NE England. Sedimentology 31:547567.Google Scholar
Fielding, C. R., 1984b. A coal depositional model for the Durham Coal Measures of NE England. Jo. Geol. Soc. London 141: 919931.Google Scholar
Fielding, C. R., 1986a. Fluvial channel and overbank deposits from the Westphalain of the Durham coalfield, NE England. Sedimentology 33: 119140.Google Scholar
Flores, R. M., 1986. Styles of coal deposition in Tertiary alluvial deposits, Powder River Basin, Montana and Wyoming. in Lyons, P. C. and Rice, C. L., (eds.) Paleoenvironmental and Tectonic Controls in coal-forming basins of the United States. Geol. Soc. Amer. Sp. Paper 210: 79104.Google Scholar
Gauch, H. G., 1982. Multivariate Analysis in Community Ecology. Cambridge University Press: Cambridge. 298p.Google Scholar
Gauch, H. G., and Whittaker, R. H., 1972. Comparison of ordination techniques. Ecology 53: 868875.Google Scholar
Gressens, R. L., 1982. Early Cenozoic geology of central Washington State: I. Summary of sedimentary, igneous, and tectonic events. Northwest Science 56(3): 218229.Google Scholar
Henderson, R. A., and Heron, M. L., 1977. A probabilistic method of paleobiogeographic analysis. Lethaia 10: 115.Google Scholar
Hickey, L. J., 1980. Paleocene stratigraphy and flora of the Clark's Fork Basin. in Gingerich, P. D. (ed.), Early Cenozoic Paleontology and Stratigraphy of the Bighorn Basin, Wyoming. University Michigan Papers Paleontology 24: 3350.Google Scholar
Hickey, L. J., and Doyle, J. A., 1977. Early Cretaceous fossil evidence for angiosperm evolution. Bot. Rev. 43: 1104.Google Scholar
Hill, M. O., and Gauch, H. G. Jr., 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio 42: 4758.CrossRefGoogle Scholar
Hubbell, S. P., 1979. Tree dispersion, abundance, and diversity in a tropical dry forest. Science 203. 12991309.Google Scholar
Johnson, S. Y., 1984a. Evidence for a margin-truncating transcurrent fault (pre-late Eocene) in western Washington. Geology 12(9): 538541.Google Scholar
Johnson, S. Y., 1984b. Stratigraphy age, and paleogeography of the Eocene Chuckanut formation, northwest Washington. Canadian Journal of Earth Science 21:92106.Google Scholar
Johnson, S. Y., 1984c. Cyclic fluvial sedimentation in a rapidly subsiding basin, northwest Washington. Sedimentary Geology 38: 361391.Google Scholar
Johnson, S. Y., 1985. Eocene strike-slip faulting and nonmarine basin formation in Washington. in Biddle, K. T. and Christie-Blick, N. (eds.), Strike-slip deformation, basin formation and sedimentation. Society Economic Paleontologists and Mineraleralogists Special Publication 37: 283302.Google Scholar
Johnson, W. B., Sasser, C. E., and Gosselink, J. G., 1985. Succession of vegetation in an evolving river delta, Atchafalaya Bay, Louisiana. Journal of Ecology 73: 973986.Google Scholar
Kovach, W., 1986. MVSP. A multivariate statistics package for the IBM PC and compatibles. Department of Biology, Indiana University. 19p.Google Scholar
Lamont, B. B., and Grant, K. J., 1979. A comparison of twenty-one measures of site dissimilarity. in Orloci, L., Rao, C. R. and Stiteler, W. M. (eds.), Multivariate Methods in Ecological Work. International Co-operative Publishing House: Fairland, Maryland. 101126.Google Scholar
Leopold, E. B., and MacGinitie, H. D., 1972. Development and affinities of Tertiary floras in the Rocky Mountains. in Graham, A. (ed.), Floristics and Paleofloristics of Asia and eastern North America. Elsevier: Amsterdam. p. 147200.Google Scholar
McKinney, M. L., and Zachos, L. G., 1986. Echinoids in biostratigraphy and paleoenvironmental reconstruction: A cluster analysis from the Eocene Gulf Coast (Ocala Limestone). Palaios 1(4): 420423.Google Scholar
McQueen, D. R., 1969. Macroscopic plant remains in Recent lake sediments. Tuatara 17: 1319.Google Scholar
Monk, C. D., 1967. Tree species diversity in the eastern deciduous forest with particular reference to North Central Florida. Amer. Naturalist 101: 173187.Google Scholar
Mueller-Dumbois, D., and Ellenberg, H., 1974. Aims and Methods of Vegetation Ecology. John Wiley:New York. 547p.Google Scholar
Mullineaux, D. R., 1970. Geology of the Renton, Auburn, and Black Diamond Quadrangles, King County, Washington. U. S. Geological Survey Professional Paper 672. 92p.Google Scholar
Nie, N. H., Hull, C. H., Jenkins, J. G., Steinbrenner, K., and Bent, D. H., 1975. SPSS: Statistical package for the Social Sciences. McGraw Hill:New York. 675p.Google Scholar
Rau, W. W., 1981. Pacific Northwest Tertiary benthic foraminiferal biostratigraphic framework - an overview. in Armentrout, J. M. (ed.), Geological Society of America Special Paper 184: 6784.Google Scholar
Raup, D. M., and Crick, R. E., 1979. Measurement of faunal similarity in paleontology. Journal of Paleontology 53: 12131227.Google Scholar
Retallack, G. J., and Dilcher, D. L., 1981. A coastal hypothesis for the dispersal and rise to dominance of flowering plants. in Niklas, K.J. (ed.), Paleobotany, Paleoecology and Evolution. Praeger:New York. 2778.Google Scholar
Roehler, H. W., 1986. McCourt Sandstone Tongue and Glades coal bed of the Rock Springs Formation, Wyoming and Utah. in Lyons, P. C. and Rice, C. L. (eds.), Paleoenvironment and tectonic controls in Coal-Forming Basins in the United States. Geological Society of America Special Paper 210: 141154.Google Scholar
SPSS, Inc., 1986. SPSSX User's Guide. SPSS Inc: Chicago. 988p.Google Scholar
Scheihing, M. H., and Pfefferkorn, H. W., 1984. The taphonomy of land plants in the Orinoco Delta: A model for incorporation of plant parts in clastic sediments of late Carboniferous age of Euramerica. Reviews Palaeobotany Palynology 41: 205240.Google Scholar
Simberloff, D., 1978. Using island biogeographic distribution to determine if colonization is stochastic. American Naturalist 112: 713726.Google Scholar
Snavely, P. D. Jr., Brown, R. D., Roberts, A. E., and Rau, W. W., 1958. Geology and coal resources of the Centralia-Chehalis district, Washington. U. S. Geological Survey Bulletin 1053. 159p.Google Scholar
Sneath, P. H. A., and Sokal, R. R., 1973. Numerical taxonomy. The principles and practice of numerical classification. W. H. Freeman: San Francisco. 573p.Google Scholar
Spicer, R. A., 1981. The sorting and deposition of allochthonous plant material in a modern environment at Silwood Lake, Silwood Park, Berkshire England. U. S. Geological Survey Professional Paper 1143. 77p.Google Scholar
Taggert, R. E., Cross, A. T., and Satchell, L., 1982. Effects of periodic volcanism on Miocene Vegetation distribution in eastern Oregon and western Idaho. Third North American Paleontological Convention, Proc. 2: 535540.Google Scholar
Tiffney, B. H., 1984. Seed size, dispersal syndromes and the rise of the Angiosperms: evidence and hypothesis. Ann. Missouri Bot. Gard. 71: 551576.Google Scholar
Tiffney, B. H., 1986. Fruit and seed dispersal and the evolution of the Hamamelidae. Ann. Missouri Bot. Gard. 73: 394416.Google Scholar
Turner, D. L., Frizell, V. A., Triplehorn, D. M., and Naeser, C. W., 1983. Radiometric dating of ash partings in coal of the Eocene Puget Group, Washington: Implications for paleobotanical stages. Geology 11: 527531.2.0.CO;2>CrossRefGoogle Scholar
Vine, J. D., 1969. Geology and coal resources of the Cumberland, Hobart, and Maple Valley Quadrangles, King County, Washington. U. S. Geological Survey Prof. Paper 624. 67p.Google Scholar
Wartenberg, D., Ferson, S., and Rohlf, F. J., 1987. Putting things in order: A critique of detrended correspondence analysis. American Naturalist 129(3):434448.Google Scholar
Wells, R. E., Engebretson, D. C., Snaveley, P. D., and Coe, P.R., 1984. Cenozoic plate motions and the volcano-tectonic evolution of western Oregon and Washington. Tectonics 3: 275294.Google Scholar
Whittaker, R. H., and Woodwell, G. M., 1969. Structure, productivity and diversity of the Oak-Pine forest at Brookhaven, NY. Journal of Ecology 57: 155174.CrossRefGoogle Scholar
Wing, S. L., 1981. A study of paleoecology and paleobotany in the Wilwood Formation (early Eocene, Wyoming). Yale Univ. . 391p.Google Scholar
Wing, S. L., 1984. Relation of paleovegetation to geometry and cyclicity of some fluvial carbonaceous deposits. Journal of Sedimentary Petrology 54(1):5266.Google Scholar
Wing, S. L., and Tiffney, B. H., 1987. The reciprocal interaction of angiosperm evolution and tetrapod herbivory. Reviews Palaeobotany Palynology 50:179210.Google Scholar
Wolfe, J. A., 1968. Paleogene biostratigraphy of nonmarine rocks in King County, Washington. U. S. Geological Survey Professional Paper 571. 33p.Google Scholar
Wolfe, J. A., 1977. Paleogene floras from the Gulf of Alaska region. U. S. Geological Survey Prof. Paper 997. 108p.Google Scholar
Wolfe, J. A., 1978. A Paleobotanical interpretation of Tertiary climates in the northern hemisphere. American Scientist 66(6): 694703.Google Scholar
Wolfe, J. A., 1981a. A chronologic framework for Cenozoic megafossil floras of northwestern North America and its relation to marine geochronology. in Armentrout, J. M., (ed.), Geological Society of America Special Paper 184: 3947.Google Scholar
Wolfe, J. A., 1981b. Paleoclimatic significance of the Oligocene and Neogene floras of the northwestern United States. in Niklas, K.J., (ed.), Paleobotany, Paleoecology and Evolution. Praeger: New York. p. 79102.Google Scholar
Wolfe, J. A., 1987. Late Cretaceous-Cenozoic history of deciduousness and the terminal Cretaceous event. Paleobiology 13(2): 215226.Google Scholar