Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-21T07:30:42.609Z Has data issue: false hasContentIssue false

A Case Against Pelagochthony: The Untenability of Carboniferous Arborescent Lycopod-dominated Floating Peat Mats

Published online by Cambridge University Press:  26 July 2017

Robert A. Gastaldo*
Affiliation:
Department of Geology, Auburn University, Alabama 36849
Get access

Abstract

In order to rectify perceived problems in the nineteenth century autochthonous and allochthonous theories of coal formation, an alternative theory was proposed that hypothesized that sylvo-marine, lycopod-dominated, floating peat mats were responsible for the development of Carboniferous coals. This pelagochthony theory was not widely accepted at the time but recently has been resurrected in order to explain the formation of Carboniferous coals well within the “Biblical time scale.” Numerous, unsubstantiated “facts” have been proposed to support the floating mat hypothesis including: the supposed hollow construction of arborescent lycopods; the extensive intertwining of stigmarian axial systems; a supposed continuous transgression of the shallow epeiric sea; a supposed stratified water column below the floating mat; and others. An examination of lycopod anatomy and morphology negates the contention of hollow arborescent lycopods and allows establishment of criteria to aid in the identification of in situ plants. An evaluation of the floating mat hypothesis in perspective demonstrates the untenable character of this proposed coal-forming mechanism. Reattachment of the floating mat is highly probable in the shallow epeiric sea, either by stigmarian axial systems proper, or helically arranged ‘rootlets.’ Isostatic adjustments of the mat would continue downwards as more biomass is generated by maturation of the trees. However, if this is ignored, meteoric waters introduced onto the surface of the mat would promote rapid decay in the tropical environment, and may preclude peat accumulation.

Type
Research Article
Copyright
Copyright © 1994 Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Austin, S. A. 1979. Depositional environment of the Kentucky No. 12 coal bed (middle Pennsylvanian) of western Kentucky, with special reference to the origin of coal lithotypes: Ph.D. Dissertation. The Pennsylvania State University. 411 p.Google Scholar
Austin, S. A. 1980a. Depositional environment of mummified bark sheets in the Kentucky No. 12 coal bed: Geological Science of American Abstracts with Programs, Volume 12, Number 7, p. 380.Google Scholar
Austin, S. A. 1980b. Depositional environment of the Kentucky coal bed (Middle Pennsylvanian) of western Kentucky, with special reference to the origin of coal lithotypes: Dissertation Abstracts International, Volume 40B, Number 9, pp. 41684169B.Google Scholar
Bierhorst, D. W. 1971. Morphology of vascular plants. MacMillan Publishing, N. Y. 560 p.Google Scholar
Binney, E. W. 1847. On fossil Calamites found standing in an erect position in the Carboniferous strata near Wigam, Lancashire: Literary and Philosophical Society of Manchester, pp. 259266.Google Scholar
Binney, E. W. 1872. Observations on the structure of fossil plants in the Carboniferous strata. Part III. Lepidodendron: Palaeontological Society London, Volume 25, pp. 6369.Google Scholar
Binney, W. E. 1875. Observation on the structure of fossil plants in the Carboniferous strata. Part IV. Sigillania and Stigmaria: Palaeontological Sciety London, Volume 28, pp. 97147.Google Scholar
Chaloner, W. G. and Meyer-Berthand, B. 1983. Leaf and stem growth in the lepidodendrales: Botanical Journal of the Linnean Society, Volume 86, pp. 135148.Google Scholar
Cypert, E. 1972. The origin of houses in the Okefenokee prairies: American Midland Naturalist, Volume 87, pp. 448458.Google Scholar
Charlton, W. A. and Watson, J. 1982. Patterns of arrangement of lateral appendages on axes of Stigmaria ficoides (Sternberg) Brongniart: Botanical Journal of the Linnean Society, 84: 209221.Google Scholar
Dawson, J. W. 1868. Acadian Geology. MacMillan and Co., London. 694 + 102 p.Google Scholar
Delapparent, A. 1892. L'Origine de la houille. Association Francais de avancement Science. Conferences de Paris.Google Scholar
Dimichele, W. A. 1979a. Arborescent lycopods of Pennsylvanian age coals: Lepidophloios. Palaeontographica, Abt. B, 171: 5777.Google Scholar
Dimichele, W. W. 1979b. Arborescent lycopods of Pennsylvanian age coals: Lepidodendron dicentricum C. Felix. Palaeontographica, Abt. B, 171: 122136.Google Scholar
Dimichele, W. A. 1980. Paralycopodites Morey and Morey, from the Carboniferous of Euramerica–a reassessment of generic affinities and evolution of “Lepidodendron” brevifolium Williamson. American Journal of Botany, 67: 14661476.Google Scholar
Dimichele, W. A. 1981. Arborescent lycopods of Pennsylvanian age coals: Lepidodendron, with description of a new species. Palaeontographica, Abt. B, 175: 85125.Google Scholar
Dimichele, W. A. 1983. Lepidodendron hickii and generic delimitation in Carboniferous lepidodendrid lycopods. Systematic Botany, 8: 317333.Google Scholar
Dimichele, W. A. and Demaris, P. J. 1982. A paleoecology of Lepidodendron aculeatum. Botanical Society of America Miscellaneous Series Publication, 162: 58.Google Scholar
Dimichele, W. A. and Phillips, T. L. 1981. Stratigraphic-geographic patterns of change in Pennsylvanian coal-swamp vegetation. Botanical Society of America Miscellaneous Series Publication, 160: 44.Google Scholar
Eggert, D. A. 1961. The ontogeny of Carboniferous Lycopsida. Palaeontographica, Abt. B, 108: 4392.Google Scholar
Fayol, H. 1887. Resume de la theorie des deltas et historie du bassin de commentry. Bulletin Geologic Societe du France. 3me Ser., 16: 968978.Google Scholar
Ferguson, L. 1970. Sedimentary evidence for the allochthonous origin of Stigmaria Carboniferous, Nova Scotia: Discussion: Geological Society of America Bulletin, 81: 25312534.Google Scholar
Ferm, J. C., Horne, J. C. and Weisenfluh, G. A., eds. 1979. Carboniferous depositional environments in the Appalachian Region. University of South Carolina, Department of Geology. Carolina Coal Group, Columbia, S. C. 760 p.Google Scholar
Frankenberg, J. M. and Eggert, D. A. 1969. Petrified Stigmaria from North America: Part I. Stigmaria ficoides, the underground portions of Lepidodendraceae. Palaeontographica, Abt. B, 128: 147.Google Scholar
Fritz, W. J. and Harrison, S. In Press. Orientations of trees transported by 1982 Mount St. Helens sediment flows. Geology.Google Scholar
Gastaldo, R. A. 1983. The utilization of in situ lycopods to differentiate Carboniferous non-peat accumulating swamps. Geological Society of America Abstracts with Program, 15: 579.Google Scholar
Goeppert, H. R. 1848. Abhandlung eingesandt als Antwort auf die Preisfrage. Amsterdam, 279 p.Google Scholar
Heckel, P. H. 1977. Origin of phosphatic black shale facies in Pennsylvanian cyclothems of mid continent North America. American Association of Petroleum Geologists Bulletin, 61: 10451068.Google Scholar
Jukes, J. B. 1859. The South Staffordshire coal-field. Geological Survey of Great Britain, 2nd ed., London, 206 p.Google Scholar
Kuntze, O. 1895. Sind carbonkohlen autochthon, allochthon oder pelagochthon? Geogenetische Beitrage. Leipzig. pp. 4277.Google Scholar
Lemiere, L. 1905. Formation et recherches companies des divers combustibles fossiles. Bulletin Societe de l'Industrial Minereaux, 4me, Ser. IV, 5: 70142.Google Scholar
Macgregor, M. and Walton, J. 1972. The story of the Fossil Grove of Glasgow Public Parks and Botanical Gardens. Dept. Glasgow. 32 p.Google Scholar
Pfefferkorn, H. W. and Zodrow, E. L. 1982. A comparison of standing forests from the Pennsylvanian of Nova Scotia with modern tropical forests. Botanical Society of America Miscellaneous Series Publication, 162: 6263.Google Scholar
Phillips, T. L. 1980. Stratigraphic and geographic occurrences of permineralized coal-swamp plants– Upper Carboniferous of North America and Europe. in Dilcher, D. L. and Taylor, T. N., eds. Biostratigraphy of fossil plants. Dowden, Hutchinson and Ross, Inc. pp. 2593.Google Scholar
Phillips, T. L., Peppers, R. A., Avcin, M. J., and Laughnan, P. F., 1974. Fossil plants and coal: patterns of change in Pennsylvanian coal swamps of the Illinois Basin. Science, 184: 13671369.Google Scholar
Potonie, H. 1909. Die Tropen-Sumpffachmoor-Natur der Moore des Produktiven Karbons. Jahrbuch der Konigl. Presuss. Geol. Landes. Bd XXX, Teil I, Herf 3, p. 389443.Google Scholar
Potonie, H., 1920. Die Entstehung und der Steinkohle Verlag von Gebruder Boentraeger. Berlin.Google Scholar
Renault, B. 1881. Cours de Botanique fossile fait au Museum d'Wistoine Naturelle. Paris. I:1185.Google Scholar
Rich, R. J. 1979. The origin and development of tree islands in the Okefenokee Swamp, as determined by peat petrography and pollen stratigraphy. Unpublished Ph.D. dissertation. Pennsylvania State University. 301 p.Google Scholar
Rupke, N. A. 1969. Sedimentary evidence for the allochthonous origin of Stigmaria, Carboniferous, Nova Scotia. Geological Society of America Bulletin, 80: 21092114.Google Scholar
Russell, R. J. 1942. Flotant. Geography Review, 32: pp. 7498.Google Scholar
Scheven, J. 1979. Floating forests on firm ground. Advances in Carboniferous Research. (Repossess the Land.) 15th Annual Convention Bible-Science Association. Anaheim, Calif. p. 187189.Google Scholar
Scheven, J. 1980a. Karbon studien 3. Hohe Sedimentation straten der Zwischengestene. Factum. January:3033.Google Scholar
Scheven, J. 1980b. Karbon studien 6. Die Sedimentatur der sogenannten wurzelboden. Factum. June: 1016.Google Scholar
Schopf, J. M. 1982. Forms and facies of Vertebraria in relation to gondwana coal. Geology of the Central Transantarctic Mountains. Antarctic Research series, 36: 3762.Google Scholar
Scott, D. H. 1920. Studies in Fossil Botany. Volume 1. A. & C. Black, Ltd., London. 434p.Google Scholar
Shaw, A. B. 1964. Time in stratigraphy. McGraw-Hill. N. Y. Google Scholar
Sorby, H. C. 1875. On the remains of a fossil forest in the coal-measures near Wadsley, near Sheffield. Quarterly Journal of the Geological Society of London, 31: 458460.Google Scholar
Spackman, W. and Cohen, A. 1976. Comparative studies of Okefenokee and Everglades Mangrove swamp-marsh complex of southern Florida. Pennsylvania State University.Google Scholar
Stanier, X. 1906. De la formation des gisements houiller. Bulletin Societe Beige de Geologie. XX, 5: 112114.Google Scholar
Stevenson, J. J. 1911a. The formation of coal beds. I. An historical summary of opinion from 1700 to the present time. Proceedings American Philosophical Society, L: 1116.Google Scholar
Stevenson, J. J. 1911b. The formation of coal beds. II. Proceedings American Philosophical Society, L: 519643.Google Scholar
Stevenson, J. J. 1912. The formation of coal. III. Proceedings of the American Philosophical Society, 51: 423553.Google Scholar
Stevenson, J. J. 1913. The formation of coal. IV. Proceedings American Philosophical Society, 52: 31162.Google Scholar
Taylor, R. C. 1846. Notice of fossil arborescent ferns, of the Family Sigillaria, and other coal plants exhibited in the roof and floor of a coal seam, in Dauphin County, PA. Transactions American Philosophical Society New Series, 10: 219227.Google Scholar
Taylor, T. N. 1981. Paleobotany. An introduction to fossil plant biology. McGraw-Hill, Inc., N. Y. 589 p.Google Scholar
Teichmuller, R. 1955. Uber Kustenmoore der gegenwart und die Moore des RuhrKarbons: Eine vergleichende sedimentologische Betrachtung. Geol. Jb., 71: 197220.Google Scholar
Thomas, B. A. and Watson, J. 1976. A rediscovered 114-foot Lepidodendron from Bolton, Lancashire. Geological Journal, 11: 1520.Google Scholar
Van Gumbel, C. W. 1883. Beitrage zur Kentrisse der Texturverhaltnisse der Mineralkohlen. Sitzungs. Berichten der K. Bayer. Akademie d. Wissenschaften. Math.-Phys. Klasse. p. 113212.Google Scholar
Ward, L. F. 1900. The autochthonous or allochthonous origin of the coal and coal plants of central France. Science, N.S., XII: 1005.Google Scholar
Williamson, W. C. 1872. On the organization of the fossil plants of the coal measures: Part III. Lycopodiaceae (continued): Philosophical Transactions Royal Society of London, 162: 283318.Google Scholar
Williamson, W. C. 1878. On the organization of the fossil plants of the coal measures: Part IX. Philosophical Transactions Royal Society of London, 169: 319364.Google Scholar
Williamson, W. C. 1881. On the organization of the fossil plants of the coal measures: Part XI. Philosophical Transactions Royal Society of London, 172: 283305.Google Scholar
Williamson, W. C. 1887. A monograph on the morphology and histology of Stigmaria ficoides. Palaeontographical Society, London, 51 p.Google Scholar
Woodward, J. 1702. An essay toward a natural history of the earth and terrestrial bodies, especially minerals, as also of the sea, rivers, and springs with an account of the universal deluge, and of the effects that it had upon the earth. 2nd ed. London. 277 p.Google Scholar
Zeigler, A. M., Scotese, C. R., McKerrow, W. S., Johnson, M. E., and Bambach, R. K. 1979. Paleozoic paleogeography. Annual Review of Earth and Planetary Sciences, 7: 473502.Google Scholar
Zodrow, E. L. 1982. Recent Paleobotanical studies, Sydney Coalfield, Cape Breton Island, Nova Scotia, Canada. Third North American Paleontological Convention, Proceedings, 2: 593598.Google Scholar