Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-21T07:27:03.214Z Has data issue: false hasContentIssue false

An investigation of fructose utilization in Acanthocheilonema viteae

Published online by Cambridge University Press:  06 April 2009

D. J. Hayes
Affiliation:
Biochemical Sciences, The Wellcome Research Laboratories, Langley Court, Beckenham, Kent BR3 3BS
N. S. Carter
Affiliation:
Biochemical Sciences, The Wellcome Research Laboratories, Langley Court, Beckenham, Kent BR3 3BS

Summary

The capacity of Acanthocheilonema viteae to metabolize fructose was investigated in vitro. In common with other filarial species A. viteae oxidized fructose to lactate but its rate of consumption was only 40% of the glucose-containing control value. Fructose was not incorporated into glycogen. Release of 14CO2 from [U-14C]fructose was not detected in the presence of glucose and was about 40% of the glucose-containing value under conditions where fructose was the sole hexose substrate. Fructose consumption and lactate excretion increased in proportion to the external concentration of fructose. However, worm viability was not maintained in fructose over a 120 h in vitro incubation. In the presence of fructose, protein synthesis (measured incorporation of [35S]methionine into acid-insoluble material) was reduced compared to the glucose-containing control group; but was significantly greater than the value obtained under glucose-free conditions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anwar, W., Ansari, A. A. & Ghatak, S. (1976). Hexose utilisation and glycogen synthesis by Setaria crevi (Nematoda). Comparative Biochemistry and Physiology 41B, 550–8.Google Scholar
Barrett, J. (1983). Biochemistry of filarial worms: adapations to parasitism. Helminthology Abstracts A52, 118.Google Scholar
Beutler, H. O. (1986). Fructose. In Methods of Enzymatic Analysis (ed. Bergmeyer, U.), pp. 321332. London: Academic Press.Google Scholar
Comley, J. C. W., Rees, M. J., Turner, C. H. & Jenkins, D. C. (1989). Colormetric quantification of filarial viability. International Journal for Parasitology 19, 7783.CrossRefGoogle Scholar
Denham, D. & Barrett, J. (1987). The chemotherapy of filarial nematode infections of man: aspirations and problems. In Chemotherapy of Tropical Diseases (ed. Hooper, M.). London: John Wiley and Sons.Google Scholar
Dehotal-Landes, B., Lemonnier, F., Couturier, M., Carreau, J. P., Gautier, M. & Lemonnier, A. (1987). Comparative metabolic effects of fructose and glucose in human fibroblast culture. In Vitro Cellular Developmental Biology 23, 355–60.CrossRefGoogle Scholar
Gutmann, I. & Wahlefeld, A. W. (1974). L-(+)-Lactate determination with lactate dehydrogenase and NAD. In Methods of Enzymatic Analysis (ed. Bergmeyer, U.), pp. 14661468. London: Academic Press.Google Scholar
Hammerstedt, R. H. (1980). A rapid method for isolating glucose metabolites involved in substrate cycling. Analytical Biochemistry 109, 443–8.CrossRefGoogle ScholarPubMed
Hayes, D. J. & Selwood, D. L. (1990). Glucose transport in Acanthocheilonema viteae. Parasitology 101, 249255.CrossRefGoogle ScholarPubMed
Hutchinson, W. F. & Mcneill, K. M. (1970). Glycolysis in the adult heartworm Dirofilaria immitis. Comparative Biochemistry and Physiology 35, 721–7.CrossRefGoogle Scholar
Hutchinson, W. F., Turner, A. C. & Oelshlegel, F. J. (1977). Hexokinase of the adult dog heartworm Dirofilaria immitis. Comparative Biochemistry and Physiology 58B, 131–4.Google Scholar
Keppler, D. & Pecker, K. (1974). Glycogen determination with amyloglucosidase. In Methods of Enzymatic Analysis (ed. Bergmeyer, U.), pp. 11271131. London: Academic Press.Google Scholar
Köhler, P. (1985). The strategies of energy conservation in helminths. Molecular and Biochemical Parasitology 17, 118.CrossRefGoogle ScholarPubMed
Morgan, M. J. & Faik, P. (1986). The utilization of carbohydrates by animal cells. In Carbohydrate Metabolism of Cultured Cells (ed. Morgan, M. J.) pp. 2975. London: Plenum Press.CrossRefGoogle Scholar
Okuno, Y. & Gliemann, J. (1986). Transport of glucose and fructose in rat hepatocytes at 37°C. Biochimica et Biophysica Ada 862, 329–34.CrossRefGoogle Scholar
Pappas, P. W. & Read, C. P. (1975). Membrane transport in helminth parasites: A review. Experimental Parasitology 374, 469550.CrossRefGoogle Scholar
Reitzer, L. J., Wice, B. M. & Kennell, D. (1980). The pentose cycle: Control and essential function in Hela cells nucleic acid synthesis. Journal of Biological Chemistry 255, 5616–26.CrossRefGoogle ScholarPubMed
Sener, A. & Malaisse, W. J. (1988). Hexose metabolism in pancreatic islets. Archives Biochemistry Biophysics 261, 1625.CrossRefGoogle ScholarPubMed
Sener, A., Malaisse-Lange, F. & Malaisse, W. J. (1987). Fructose metabolism via the pentose cycle in tumoral islet cells. European Journal of Biochemistry 170, 447–52.CrossRefGoogle ScholarPubMed
Srivastava, V. M. L. & Ghatak, S. (1971). Glycolytic and carbon dioxide metabolising enzymes in Chandlerella hawkingi. Indian Journal of Biochemistry and Biophysics 8, 108–11.Google Scholar
Srivastava, V. M. L., Saz, H. J. & De Bruyn, B. (1988). Comparisons of glucose and amino acid use in adult and microfilariae of Brugia pahangi. Parasitology Research 75, 16.CrossRefGoogle ScholarPubMed
Tielens, A. G. M., Celik, C. V.Van Den Heuvel, J. M., Elring, R. H. & Van Den Bergh, S. G. (1989). Synthesis and degradation of glycogen by Schistosoma mansoni worms in vitro. Parasitology 98, 6773.CrossRefGoogle ScholarPubMed
Wang, E. J. & Saz, H. J. (1974). Comparative biochemical studies of Litomosides carinii, D. petalonema viteae and Brugia pahangi adults. Journal of Parasitology 60, 316–21.CrossRefGoogle Scholar
Williams, S. P., Newton, R. P. & Brown, E. G. (1987). Analysis of the effects of ethanol, fructose and nicotinamide on the free nucleotides of rat liver using high performance liquid chromatography. International Journal of Biochemistry 19, 879–84.CrossRefGoogle ScholarPubMed