Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-24T23:37:26.205Z Has data issue: false hasContentIssue false

The cellular response of the fowl small intestine to primary and secondary infections of the cestode Raillietina cesticillus (Molin)

Published online by Cambridge University Press:  06 April 2009

J. S. Gray
Affiliation:
Department of Agricultural Zoology, University College, Glasnevin, Dublin 9

Extract

Infections of Raillietina cesticillus in the small intestine of the fowl caused a mononuclear leucocyte infiltration, which occurred in the tissues around the worm scolices and was especially prevalent in challenge infections. There was no evidence of vascular congestion or of a neutro-philic response, and the cellular reaction seemed to consist of a local proliferation of lymphoid tissue. Mast cell and pyroninophylic cell numbers increased in the intestinal mucosa of birds with longstanding primary infections and with secondary infections, but very little eosin-lophil infiltration was detected and the globule leucocyte response was minimal. The infections had no effect on the numbers of thelio-lymphocytes and goblet cells. Challenge infections did not result in an increased level of serum antibodies, but more cells containing globulin seemed to be present in the intestinal mucosa of these birds. The interrelationships of the various cell responses to the cestode and the origin of the globule leucocyte are discussed in the light of previous work on helminth infections.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andreassen, J., Hindsbo, O. & Hesselberg, C. A. (1974). Immunity to Hymenolepis diminuta in rats: destrobilation and expulsion in primary infections, its suppression by cortisone treatment and increased resistance to secondary infections. In Third International Congress of Parasitology, Munich,August 25–31. Proceedings, vol. 2, pp. 1056–7. FACTA Publication:Vienna, Austria.Google Scholar
Asdrubali, G. & Mughetti, L. (1969). Sul comportamento bei cosidetti ‘leucociti globulari’ in alcune parassitosi intestinali del polio. Atti Societé Italiana delle Scienze Veterinaire 28, 601–6.Google Scholar
Báck, O. (1972). Studies on the lymphocytes in the intestinal epithelium of the chicken. 1. Ontogeny. Acta Pathologica et Microbiologica Scandinavian 80 (a), 8496.Google ScholarPubMed
Batlenger, J., Badouin, M. & Pautrizel, R. (1961). Étude de rimmunité des Rongeurs à l'egard d'Hymenolepia nana. Annales de Parasitologie Humaine et Comparée 36, 595610.Google Scholar
Bailey, G. N. A. (1971). Hymenolepia diminuta: circadian rhythm in movement and body length in the rat. Experimental Parasitology 29, 285–91.CrossRefGoogle ScholarPubMed
Basten, A., Boyer, M. H. & Beeson, P. B. (1970). Mechanisms of eosinophilia. 1. Factors affecting the eosinophil response of rats to Trichinella spiralis. Journal of Experimental Medicine 131, 1271–87.CrossRefGoogle Scholar
Befus, A. D. (1975). Secondary infections of Hymenolepis diminuta in mice: effects of varying oworm burdens in primary and secondary infections. Parasitology 71, 6175.CrossRefGoogle ScholarPubMed
Dobson, C. (1966 a). Globule leucocytes, mucin and mucin cells in relation to Oesophagostomum columbianum infections in sheep. Australian Journal of Science 28, 434.Google Scholar
Dobson, C. (1966 b). Studies on the immunity of sheep to Oesophagostomum columbianum: the nature and fate of the globule leucocyte. Australian Journal of Agricultural Research 17, 955–66.CrossRefGoogle Scholar
Dobson, C. & Souolsby, E. J. L. (1974). Cell kinetics in guinea pigs infected with Trichostrongylus colubriformis: Tritiated thymidine uptake in gut and allied lymphoid tissue, humoral IgE and haemagglutinating antibody responses, delayed hypersensitivity reactions and in vitro lymphocyte transformations during primary infections. Experimental Parasitology 35, 1634.CrossRefGoogle ScholarPubMed
Fernex, M. (1963). Mast cells and helminthic diseases. Pathogenesis of mastocytosis, its consequences: eosinophilia and fibroplasia. Annales de la Beige de Médecine Tropicale 4, 325–42.Google Scholar
Fernex, M. & Fernex, P. (1962). Increased number of mast cells and helminthic diseases. Experimental mastocytosis in mice. Acta Tropica 19, 248–51.Google ScholarPubMed
Gemmell, M. A. & Soulsby, E. J. L. (1968). The development of acquired immunity to tapeworms and progress towards active immunisation with special reference to Echinococcus spp. Bulletin of the World Health Organisation 39, 4555.Google ScholarPubMed
Garin, J. P. & Mojon, M. (1972). Blood eosinophilia in the course of taeniasis (T. saginata). Lyon Médical 228, 339–43.Google Scholar
Gleason, L. N. (1971). The responses of the white mouse to a primary infection with Hymenolepis microstoma. Journal of the Elisha Mitchell Scientific Society 87, 1117.Google Scholar
Gray, J. S. (1972 a). The effect of host age on the course of infection of Raillietina cesticillus (Molin, 1858) in the fowl. Parasitology 65, 235–41.CrossRefGoogle Scholar
Gray, J. S. (1972 a). Studies on the course of infection of the poultry cestode, Raillietina cesticillus (Molin, 1858) in the definitive host. Parasitology 65, 243–50.CrossRefGoogle ScholarPubMed
Gray, J. S. (1973). Studies on host resistance to secondary infections of Raillietina cesticillus (Molin, 1858) in the fowl. Parasitology 67, 375–82.CrossRefGoogle ScholarPubMed
Holman, J. (1972). Ultrastructure of specific granules of the intestinal globule leucocytes of the chicken. Acta Veterinaria Brno 41, 235–9.Google Scholar
Hopkins, C. A. (1970). Diurnal movement of Hymenolepis diminuta in the rat. Parasitology 60, 255–71.CrossRefGoogle ScholarPubMed
Hopkins, C. A, Subramanian, G. & Stallard, H. (1972). The development of Hymenolepis diminuta in primary and secondary infections in mice. Parasitology 64, 401–12.CrossRefGoogle ScholarPubMed
Heyneman, D. (1962). Studies on helminth immunity. 1. Comparison between lumenal and tissue phases of infection in the white mouse by Hymenolepis nana (Cestoda: Hymenolepididae). American Journal of Tropical Medicine and Hygiene 2, 4663.CrossRefGoogle Scholar
Jarrett, W. F. H., Miller, H. B. P. & MUrray, M. (1967). The relationship between mast cells and globule leucocytes in parasitic infections. Veterinary Record 80, 505–6.Google Scholar
Kaushik, R. K. & Deobani, V. P. S. (1970). Observations on pathology of natural tapeworms in Indian poultry. Haryana Agricultural University Journal of Research 1, 105–11.Google Scholar
Kent, J. F. (1952). The origin, fate and cytochemistry of the globule leucocyte of the sheep. Anatomical Record 112, 91116.CrossRefGoogle ScholarPubMed
Kent, J. F. (1966). Distribution and fine structure of globule leucocytes in respiratory and digestive tracts of the laboratory rat. Anatomical Record 156, 439–54.CrossRefGoogle ScholarPubMed
Lendrum, A. C. (1944). The staining of eosinophil polymorphs and enterochromaffin cells in histologieal sections. Journal of Pathology and Bacteriology 56, 441.CrossRefGoogle Scholar
Lumsden, R. D. & Karin, D. S. (1970). Electron microscopy of the peribiliary connective tissues in mice infected with the tapeworm Hymenolepis microstoma. Journal of Parasitology 56, 1171–83.CrossRefGoogle ScholarPubMed
Miller, H. R. P. & Jarrett, W. F. H. (1971). Immune reactions in mucous membranes. 1. Intestinal mast cell response during helminth expulsion in the rat. Immunology 20, 277–88.Google ScholarPubMed
Murray, M., Miller, H. R. P. & Jarrett, W. F. H. (1968). The globule leucocyte and its derivation from the subepithelial mast cell. Laboratory Investigation 19, 222–34.Google Scholar
Nadakal, A. M, Mohandas, A., John, K. O. & Muraleedharan, K. (1973). Contribution to the biology of the fowl cestode Raillietina echinobothridia with a note on its pathogenicity. Transactions of the American Microscopical Society 92, 273–6.CrossRefGoogle Scholar
Nadakal, A. M, Muraleedharan, K., John, K. O. & Mohandas, A. (1971). Resistance potential of certain breeds of domestic fowl exposed to Raillietina tetragona infections. V. Pathogenic effects of the cestode on growing chicks. Japanese Journal of Parasitology 20, 433–8.Google Scholar
Nath, D. & Pande, B. P. (1963). A histologieal study of the lesions in tapeworm infestations of domestic fowl. The Indian Journal of Veterinary Science and Animal Husbandry 33, 17.Google Scholar
Rees, G. (1967). Pathogenesis of adult cestodes. Helminthological Abstracts 36, 123.Google Scholar
Rothwell, T. L. W. & Dineen, J. K. (1972). Cellular reactions in guinea pigs following primary and challenge infections with Trichostrongylus colubriformis with special reference to the role played by eosinophils and basophils in rejection of the parasite. Immunology 22, 733–45.Google Scholar
Sandborn, C. R, Marquardt, W. C. & Duszynski, D. W. (1970). Hymenolepis microstoma: early histopathologic changes in mouse bile duct. Transactions of the American Microscopical Society 89, 274–6.CrossRefGoogle Scholar
Simpson, G. F. & Gleason, L. N. (1975). Lesion formation in the livers of mice caused by metabolic products of Hymenolepis microstoma. Journal of Parasitology 61, 152–4.CrossRefGoogle ScholarPubMed
Smyth, J. D, Gemmel, M. & Smyth, M. M. (1970). Establishment of Echinococcus granulosus in the intestine of normal and vaccinated dogs. In H. D. Srivastava Commemoration Volume (ed. Singh, K. S. and Tandan, B. K.), pp. 167–78. Izatnagat, U.P.: Indian Veterinary Research Institute.Google Scholar
Sommerville, R. J. (1956). The histology of the ovine abomasum and relation of the globule leucocyte to nematode infections. Australian Veterinary Journal 32, 237–40.CrossRefGoogle Scholar
Takeuchi, A., Jervis, H. R. & Sprtnz, H. (1969). The globule leucocyte in the intestinal mucosa of the cat: a histochemical, light and electron microscopic study. Anatomical Record 164, 79101.CrossRefGoogle Scholar
Taliaferro, W. H. & Sarles, M. P. (1939). The cellular reactions in the skin, lungs and intestine of normal and immune rats after infection with Nippostrongylus muris. The Journal of Infectious Diseases 64, 156–93.CrossRefGoogle Scholar
Toner, P. G. (1965). The fine structure of the globule leucocyte in the fowl intestine. Acta Anatomica 61, 321–30.CrossRefGoogle ScholarPubMed
Wassom, D. L, Guss, V. M. & Grundmann, A. W. (1973). Host resistance in a natural host–parasite system. Resistance to Hymenolepis citelli by Peromyscus maniculatus. Journal of Parasitology 59, 117–21.CrossRefGoogle Scholar
Weinmann, C. J. (1970). Cestodes and Acanthocephala. In Immunity to Parasitic Animals, vol. n (ed. Jackson, G. J., Herman, R. and Singer, I.), pp. 1021–59. New York: Appleton-Century-Crofls.Google Scholar
Wells, P. D. (1962). Mast cell, eosinophil and histamine levels in Nippostrongylus brasiliensis infected rats. Experimental Parasitology 12, 82101.CrossRefGoogle ScholarPubMed
Whur, P. (1966). Relationship of globule leucocytes to gastrointestinal nematodes in the sheep and Nippostrongylus brasiliensis and Hymenolepis nana infections in rats. Journal of Comparative Pathology 76, 5765.CrossRefGoogle ScholarPubMed
Whur, P. & Johnston, H. S. (1967). Ultrastructure of globule leucocytes in immune rats infected with Nippostrongylus brasiliensis and their possible relationship to the Russell body cell. Journal of Pathology and Bacteriology 93, 81–5.CrossRefGoogle Scholar