Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-02T10:19:41.317Z Has data issue: false hasContentIssue false

Cloning and functional expression of a Shaker-related voltage-gated potassium channel gene from Schistosoma mansoni (Trematoda: Digenea)

Published online by Cambridge University Press:  06 April 2009

E. Kim
Affiliation:
Department of Pharmacology and Toxicology and Department of Zoology, Michigan State University, East Lansing, Michigan 48824, USA
T. A. Day
Affiliation:
Department of Pharmacology and Toxicology and Department of Zoology, Michigan State University, East Lansing, Michigan 48824, USA
J. L. Bennett
Affiliation:
Department of Pharmacology and Toxicology and Department of Zoology, Michigan State University, East Lansing, Michigan 48824, USA
R. A. Pax
Affiliation:
Department of Pharmacology and Toxicology and Department of Zoology, Michigan State University, East Lansing, Michigan 48824, USA

Summary

We have isolated a cDNA (SKvl. 1) encoding a Shaker-related K+ channel from an adult cDNA library of the human parasitic trematode Schistosoma mansoni. The deduced amino acid sequence (512 aa, 56·5 kDa) contains 6 putative membrane-spanning domains (S1–S6) and a pore-forming domain (H5). SKv1.1 is grouped in the Shaker family, but forms a unique branch within this family, on the basis of dendrogram analysis. SKv1.1 shows significant sequence identity with most other Shaker channels, with 64—74% identity in the core region (S1–S6). It has the highest sequence identity with the K+ channel (Ak01a) from Aplysia. Northern blot analysis detected a single primary transcript of 2·8 kb. Southern blot analysis indicated that SKv1.1 is present as a single copy in the genomic DNA of S. mansoni. Expression of SKv1. 1 in Xenopus oocytes produced a rapidly activating and inactivating outward K+ current which is highly sensitive to 4-aminopyridine, but is insensitive to tetraethylammonium, mast cell degranulating peptide, dendrotoxin and charybdo-toxin. The presence of a Shaker homologue in Schistosoma suggests that Sh subfamilies may exist in other lower invertebrates as well as platyhelminths.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Attali, B., Lesage, F., Ziliani, P., Guillemare, E., Honoré, E., Waldmann, R., Hugnot, J.-P., Mattéi, M. G., Lazdunski, M. & Barhanin, J. (1993). Multiple mRNA isoforms encoding the mouse cardiac Kv1–5 delayed rectifier K+ channel. Journal of Biological Chemistry 268, 24283–9.Google Scholar
Baumann, A., Grupe, A., Ackermann, A. & Pongs, O. (1988). Structure of the voltage-dependent potassium channels is highly conserved from Drosophila to vertebrate central nervous systems. EMBO Journal 7, 2457–63.Google Scholar
Chandy, K. G. (1991). Simplified gene nomenclature. Nature, London 352, 26.CrossRefGoogle ScholarPubMed
Clark, J. M. (1988). Novel non-templated nucleotide addition reactions catalyzed by procaryotic and eukaryotic DNA polymerase. Nucleic Acids Research 16, 9677–86.Google Scholar
Davis, R. E., Davis, A. H., Carroll, S. M., Rajkovic, A. & Rottman, F. M. (1988). Tandomly repeated exons encode 81-base repeats in multiple, developmentally regulated Schistosoma mansoni transcripts. Molecular and Cellular Biology 8, 4745–55.Google Scholar
Day, T. A., Bennett, J. L. & Pax, R. A. (1993). Voltage-gated currents in muscle cells of Schistosoma mansoni. Parasitology 106, 471–7.CrossRefGoogle ScholarPubMed
Deitmer, J. (1989). Ion channels and the cellular behavior of Stylonychia. In Evolution of the First Nervous System, NATO ASI series A, Life Sciences, Vol. 188 (ed. Anderson, P. A. V.), pp. 255–65. New York: Plenum.CrossRefGoogle Scholar
Eckert, R. & Brehm, P. (1979). Ionic mechanisms of excitation in Paramecium. Annual Review of Biophysics and Bioengineering 8, 353–83.Google Scholar
Frech, G. C., Vandongen, A. M., Schuster, G., Brown, A. M. & Joho, R. H. (1989). A novel potassium channel with delayed rectifier properties isolated from rat brain by expression cloning. Nature, London 340, 642–5.Google Scholar
Grupe, A., Schröter, K. H., Ruppersberg, J. P., Stocker, M., Drewes, T., Beckh, T. & Pongs, O. (1990). Cloning and expression of a human voltage-gated potassium channel. A novel member of the RCK potassium channel family. EMBO Journal 9, 1749–56.Google Scholar
Guillemare, E., Honoré, E., Pradier, L., Lesage, F., Schwetz, H., Attali, B., Barhanin, J. & Lazdunski, M. (1992). Effects of the level of mRNA expression on biophysical properties, sensitivity to neurrtoxins and regulation of the brain delayed-rectifier K+ channels Kv1.2. Biochemistry 31, 12463–8.Google Scholar
Hagiwara, S., Yoshida, S. & Yoshii, M. (1981). Transient and delayed potassium currents in the egg cell membrane of the coelenterate, Renilla koellikeri. Journal of Physiology 318, 123–41.CrossRefGoogle ScholarPubMed
Hille, B. (1992). Evolution and diversity. In Ionic Channels of Excitable Membranes, 2nd Edn, pp. 525—44. Sunderland: Sinauer Associates Inc.Google Scholar
Honoré, E., Attali, B., Romey, B., Lesage, F., Barhanin, J. & Lazdunski, M. (1992). Different types of K+ channel current are generated by different levels of a single mRNA. EMBO Journal 11, 2465–71.CrossRefGoogle ScholarPubMed
Isacoff, E. Y., Jan, Y. N. & Jan, L. Y. (1991). Identification of a putative receptor for the cytoplasmia inactivation gate in the Shaker K+ channel. Science 353, 8690.Google Scholar
Iverson, L. E. & Rudy, B. (1990). The role of divergent amino and carboxyl domains on the inactivation properties of potassium channels derived from the Shaker gene of Drosophila. Journal of Neuroscience 10, 2903–16.CrossRefGoogle ScholarPubMed
Jan, L. Y. & Jan, Y. N. (1990). How might the diversity of potassium channels be generated ? Trends in Neuroscience 13, 415–19.CrossRefGoogle ScholarPubMed
Kamb, A., Tseng-Crank, J. & Tanouye, M. A. (1988). Multiple products of the Drosophila Shaker gene may contribute to potassium channel diversity. Neuron 1, 421–30.Google Scholar
Kavanaugh, M. P., Varnum, M. D., Osborne, P. B., Christie, M. J., Busch, A. E., Adelman, J. P. & North, R. A. (1991). Interaction between tetraethylammonium and amino acid residues in the pore of rat-cloned voltage-dependent potassium channels. Journal of Biological Chemistry 266, 7583–7.Google Scholar
Kozak, M. (1991). Structural features in eukaryotic mRNAs that modulate the initiation of translation. Journal of Biological Chemistry 266, 19867–70.Google Scholar
Kyte, J. & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157, 105–35.CrossRefGoogle ScholarPubMed
Lanzillo, J. J. (1990). Preparation of digoxigenin-labeled probes by the polymerase chain reaction. Biotechniques 8, 620–2.Google Scholar
Luneau, C., Wiedmann, R., Smith, J. S. & Williams, J. B. (1991 a). Shaw-like rat brain potassium channel cDNA's with divergent 3' ends. FEBS Letters 288, 163–7.CrossRefGoogle ScholarPubMed
Luneau, C., Williams, J. B., Marshall, J., Levitan, E. S., Oliva, C., Smith, J. S., Antanavage, J., Folander, K., Stein, J. S., Swanson, R., Kaczmarek, L. K. & Bushrow, S. (1991 b). Alternative splicing contributes to K+ channel diversity in the mammalian central nervous system. Proceedings of the National Academy of Sciences, USA 88, 3932–6.Google Scholar
Mackinnon, R., Heginbotham, L. & Abramson, T. (1990). Mapping the receptor site for charybdotoxin, a pore-blocking potassium channel inhibitor. Neuron 5, 767–71.CrossRefGoogle ScholarPubMed
Mackinnon, R. & Miller, C. (1989). Mutant potassium channels with altered binding of charybdotoxin, a pore-blocking peptide inhibitor. Science 245, 1382—5.Google Scholar
Mackinnon, R. & Yellen, G. (1990) Mutations affecting TEA blockade and ion permeation in voltage-activated K+ channels. Science 250, 276–9.Google Scholar
Martin, R. J., Thorn, P., Gration, K. A. & Harrow, I. D. (1992). Voltage-activated currents in somatic muscle of the nematode parasite Ascaris suum. Journal of Experimental Biology 173, 7590.Google Scholar
Meadows, H. M. & Simpson, A. J. G. (1989). Codon usage in Schistosoma. Molecular and Biochemical Parasitology 36, 291–3.Google Scholar
Needleman, S. B. & Wunsch, C. D. (1970). A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology 48, 443–53.Google Scholar
Pfaffinger, P. J., Furukawa, V., Zhao, B., Dugan, D. & Kandel, E. R. (1991). Cloning and expression of an Aplysia K+ channel and comparison with native Aplysia K+ currents. Journal of Neuroscience 11, 918–27.CrossRefGoogle ScholarPubMed
Quick, M. W., Naeve, J., Davidson, N. & Lester, H. A. (1992). Incubation with horse serum increases viability and decreases background neurotransmitter uptake in Xenopus oocytes. Biotechniques 13, 357–61.Google Scholar
Rettig, J., Wunder, F., Stocker, M., Lichting-Hagen, R., Mstiaux, F., Beckh, B., Kues, W., Pedarzani, P., Schröter, K. H., Ruppersberg, J. P., Veh, R. & Pongs, O. (1992). Characterization of a Shaw-related potassium channel family in rat brain. EMBO Journal 11, 2473–86.Google Scholar
Roberds, S. L. & Tamkun, M. M. (1991). Cloning and tissue-specific expression of five voltage-gated potassium channel cDNAs expressed in rat heart. Proceedings of the National Academy of Sciences, USA 88, 1798–802.CrossRefGoogle ScholarPubMed
Salkoff, L., Baker, K., Butler, A., Covarrubias, M., Pak, M. D. & Wei, A. (1992). An essential ‘set’ of K+ channels conserved in flies, mice and humans. Trends in Neuroscience 15, 161–6.Google Scholar
Schwarz, T. L., Tempel, B. L., Papazian, D. M., Jan, Y. N. & Jan, L. Y. (1988). Multiple potassium-channel components are produced by alternative splicing at the Shaker locus in Drosophila. Nature, London 331, 137–42.Google Scholar
Shen, W. & Waye, M. Y. (1988). A novel method for generating a nested set of unidirectional deletion mutants using mixed oligodeoxynucleotides. Gene 70, 205–11.Google Scholar
Sneath, P. H. A. & Sokal, R. R. (1973). Numerical Taxonomy. San Francisco: W. H. Freeman and Company.Google Scholar
Spindel, E. R., Giladi, E., Brehm, P., Goodman, R. H. & Segerson, T. P. (1990). Cloning and functional characterization of a complementary DNA encoding the murine fibroblast bombesin'gastrin-releasing peptide receptor. Molecular Endocrinology 4, 1956–63.CrossRefGoogle ScholarPubMed
Stocker, M., Stühmer, W., Wittka, R., Wang, X., Müller, R., Ferrus, A. & Pongs, O. (1990). Alternative Shaker transcripts express either rapidly inactivating or noninactivating K+ channels. Proceedings of the National Academy of Sciences, USA 87, 8903–7.Google Scholar
Stühmer, W., Ruppersberg, J. P., Schröter, K. H., Sakmann, B., Stoker, M., Giese, K. P., Perschke, A., Baumann, A. & Pongs, O. (1989). Molecular basis of functional diversity of voltage-gated potassium channels in mammalian brain. EMBO Journal 8, 3235–44.Google Scholar
Swanson, R., Marshall, J., Smith, J. S., Williams, J. B., Boyle, M. B., Folander, K., Luneau, C. J., Antanavage, J., Oliva, C. & Buhrow, S. A. (1990). Cloning and expression of cDNA and genomic clones encoding three delayed rectifier potassium channels in rat brain. Neuron 4, 929–39.Google Scholar
Thornhill, W. B. & Levinson, S. R. (1987). Biosynthesis of electroplax sodium channels in Electrophorus electrocytes and Xenopus oocytes. Biochemistry 26, 4381–8.Google Scholar
Timpe, L. C., Jan, Y. N. & Jan, L. Y. (1988). Four cDNA clones from the Shaker locus of Drosophila induce kinetically distinct A-type potassium currents in Xenopus oocytes. Neuron 1, 659–67.Google Scholar
Timpe, L. C., Schwarz, T. L., Tempel, B. L., Papazian, D. M., Jan, Y. N. & Jan, L. Y. (1988). Expression of functional potassium channels from Shaker cDNA in Xenopus oocytes. Nature, London 331, 143–5.Google Scholar
Wei, A., Covarrubias, M., Butler, A., Baker, K., Pak, M. & Salkoff, L. (1990). K+ current diversity is produced by an extended gene family conserved in Drosophila and mouse. Science 248, 599603.Google Scholar
Yu, L. & Bloem, L. J. (1993). Use of polymerase chain reaction to screen phage libraries. In PCR Protocols, Current Methods and Applications (ed. White, B. A.), pp. 211—15. Totowa: Humana Press.Google Scholar