Hostname: page-component-84b7d79bbc-rnpqb Total loading time: 0 Render date: 2024-08-01T22:28:56.972Z Has data issue: false hasContentIssue false

Evasion of macrophage microbicidal mechanisms by mature sporozoites of Plasmodium yoelii yoelii

Published online by Cambridge University Press:  06 April 2009

Judith E. Smith
Affiliation:
Department of Pure and Applied Biology, Imperial College of Science and Technology, Prince Consort Road, London SW7 2BB
James Alexander
Affiliation:
Department of Pure and Applied Biology, Imperial College of Science and Technology, Prince Consort Road, London SW7 2BB

Summary

Sporozoites of Plasmodium yoelii yoelii were incubated for 40 min with BALB/c peritoneal macrophages in the presence of nitro-blue tetrazolium (NBT). While immature oocyst sporozoites triggered the macrophage respiratory burst, as visualized microscopically by the localized reduction of NBT to insoluble formazan, 97·6% of mature salivary gland sporozoites did not induce such a response. The macrophage oxidative response was also induced by 82·7% of heat-inactivated and 95·7% of trypsin-treated salivary gland sporozoites. The relationship of these results to the infectivity and immunogenicity of malarial sporozoites is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aikawa, M., Yoshida, N., Nussenzweig, R. S. & Nussenzweig, V. (1981). The protective antigen of sporozoite Plasmodium berghei is a differentiation antigen. Journal of Immunology 126, 2494–5.CrossRefGoogle ScholarPubMed
Blackwell, J. M. & Alexander, J. (1983). The macrophage and parasitic protozoa. Transactions of the Royal Society of Tropical Medicine and Hygiene 162, 324–31.Google Scholar
Blackwell, J. M., Ezekowitz, R. A. B., Roberts, M. B., Channon, J. Y., Sim, R. B. & Gordon, S. (1985). Macrophage complement and lectin like receptors bind Leishmania in the absence of serum. Journal of Experimental Medicine 162, 324–31.CrossRefGoogle ScholarPubMed
Channon, J. Y., Roberts, M. B. & Blackwell, J. M. (1984). A study of the differential respiratory burst activity elicited by promastigotes and amastigotes of Leishmania donovani in murine resident peritoneal macrophages. Immunology 53, 345–55.Google ScholarPubMed
Danforth, H. D., Aikawa, M., Cochrane, A. H. & Nussenzweig, R. S. (1980). Sporozoites of mammalian malaria: attachment to, interiorization and fate within macrophages. Journal of Protozoology 27, 193202.CrossRefGoogle Scholar
Hollingdale, M. R., Nardin, E. H., Tharavanij, S., Schwartz, A. L. & Nussenzweig, R. S. (1984). Inhibition of entry of Plasmodium falciparum and P. vivax sporozoites into cultured cells: an in vitro assay of protective antibodies. Journal of Immunlogy 132, 909–13.CrossRefGoogle Scholar
Meis, J., Verhave, J. P., Jap, P. J. & Meuwissen, J. H. E. Th. (1982). The role of Kupffer cells in the trapping of malarial sporozoites in the liver and subsequent infection of hepatocytes. In Sinusoidal Liver Cells (ed. Knook, P. L. and Wisse, E.), pp. 429436. Amsterdam: Elsevier, North-Holland Biomedical Press.Google Scholar
Meis, J. F. G. M., Verhave, J. P., Jap, P. H. K. & Meuwissen, J. H. E. Th. (1983). An ultra-structural study on the role of Kupffer cells in the process of infection by Plasmodium berghei sporozoites in rats. Parasitology 86, 231–42.CrossRefGoogle Scholar
Murray, H. W. (1981). Susceptibility of Leishmania to oxygen intermediates and killing by normal macrophages. Journal of Experimental Medicine 153, 1302–15.CrossRefGoogle ScholarPubMed
Murray, H. W. (1982). Cell mediated immune response in experimental visceral leishmaniasis. II. Oxygen-dependent killing of intracellular Leishmania donovani amastigotes. Journal of Immunology 129, 351–7.CrossRefGoogle ScholarPubMed
Remaley, A. T., Kuhns, D. B., Basford, R. E., Glew, R. H. & Kaplin, S. S. (1984). Leishmania phosphatase blocks neutrophil O2– production. Journal of Biological Chemistry 259, 11173–5.CrossRefGoogle Scholar
Shin, S. C. J., Vanderberg, J. P., Terzakis, J. A. (1982). Direct infection of hepatocytes by sporozoites of Plasmodium berghei. Journal of Protozoology 29, 448–54.CrossRefGoogle ScholarPubMed
Sinden, R. E. & Smith, J. E. (1982). The role of the Kupffer cell in the infection of rodents by sporozoites of Plasmodium: uptake of sporozoites by perfused liver and the establishment of infection in vivo. Acta Tropica 39, 1127.Google Scholar
Smith, J. E. & Sinden, R. E. (1982). On the relationship between Kupffer cell activity and the uptake and infectivity of sporozoites of Plasmodium yoelii nigeriensis. In Sinusoidal Liver Cells, (ed. Knook, D. L. and Wisse, E.), pp. 437444. Amsterdam: Elsevier, North-Holland Biomedical Press.Google Scholar
Smith, J. E., Meis, J. F. G. M., Ponnudurai, T., Verhave, J. P. & Moshage, H. J. (1984). In vitro culture of the exoerythrocytic form of Plasmodium falciparum in adult human hepatocytes. Lancet 8405, 757–8.CrossRefGoogle Scholar
Turner, D. P. (1981). Preliminary observations on the cell surface of Plasmodium gallinaceum sporozoites. Transactions of the Royal Society of Tropical Medicine and Hygiene 75, 176–8.CrossRefGoogle ScholarPubMed
Verhave, J. P., Meuwissen, J. H. E. Th. & Golenser, J. (1980). The dual role of macrophages in the sporozoite induced malaria infection. A hypothesis. International Journal of Nuclear and Medical Biology 7, 149–56.CrossRefGoogle ScholarPubMed
Wright, S. D. & Silverstein, S. C. (1983). Receptors for C3b and C3bi promote phagocytosis but not the released toxic oxygen from human phagocytes. Journal of Experimental Medicine 158, 2016–23.CrossRefGoogle Scholar
Yamamoto, K. & Johnston, R. B. (1984). Dissociation of phagocytosis from stimulation of the oxidative burst in macrophages. Journal of Experimental Medicine 159, 405–16.CrossRefGoogle ScholarPubMed