Hostname: page-component-68945f75b7-76l5x Total loading time: 0 Render date: 2024-08-05T19:52:52.283Z Has data issue: false hasContentIssue false

The evolution of metabolic profiling in parasitology

Published online by Cambridge University Press:  05 May 2010

E. HOLMES*
Affiliation:
Biomolecular Medicine, Department of Surgery and Cancer, Imperial College, London SW7 2AZ
*
Corresponding author: Tel.: +44(0)207 594 3220; Fax: +44(0)207 594 3226; E-mail: elaine.holmes@imperial.ac.uk

Summary

The uses of metabolic profiling technologies such as mass spectrometry and nuclear magnetic resonance spectroscopy in parasitology have been multi-faceted. Traditional uses of spectroscopic platforms focused on determining the chemical composition of drugs or natural products used for treatment of parasitic infection. A natural progression of the use of these tools led to the generation of chemical profiles of the parasite in in vitro systems, monitoring the response of the parasite to chemotherapeutics, profiling metabolic consequences in the host organism and to deriving host-parasite interactions. With the dawn of the post-genomic era the paradigm in many research areas shifted towards Systems Biology and the integration of biomolecular interactions at the level of the gene, protein and metabolite. Although these technologies have yet to deliver their full potential, metabolic profiling has a key role to play in defining diagnostic or even prognostic metabolic signatures of parasitic infection and in deciphering the molecular mechanisms underpinning the development of parasite-induced pathologies. The strengths and weaknesses of the various spectroscopic technologies and analytical strategies are summarized here with respect to achieving these goals.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Angulo, S., García-Pérez, I., Legido-Quigley, C. and Barbas, C. (2009). The autocorrelation matrix probing biochemical relationships after metabolic fingerprinting with CE. Electrophoresis 30, 12211227.CrossRefGoogle ScholarPubMed
Bailey, N. J., Wang, Y., Sampson, J., Davis, W., Whitcombe, I., Hylands, P. J., Croft, S. L. and Holmes, E. (2004). Prediction of anti-plasmodial activity of Artemisia annua extracts: application of 1H NMR spectroscopy and chemometrics. Journal of Pharmaceutical and Biomedical Analysis 35, 117126.CrossRefGoogle ScholarPubMed
Blackburn, B. J., Hudspeth, C. and Novak, M. (1993). Proton nuclear magnetic resonance analysis of liver metabolites from mice infected with Mesocestoides vogae. International Journal for Parasitology 23, 953957.CrossRefGoogle ScholarPubMed
Boyom, F. F., Ngouana, V., Zollo, P. H., Menut, C., Bessiere, J. M., Gut, J. and Rosenthal, P. J. (2003). Composition and anti-plasmodial activities of essential oils from some Cameroonian medicinal plants. Phytochemistry 64, 12691275.CrossRefGoogle ScholarPubMed
Breitling, R., Pitt, A. R. and Barrett, M. P. (2006). Precision mapping of the metabolome. Trends in Biotechnoogy 24, 543548.CrossRefGoogle ScholarPubMed
Breitling, R., Vitkup, D. and Barrett, M. P. (2008). New surveyor tools for charting microbial metabolic maps. Nature Reviews Microbiology 6, 156161.CrossRefGoogle ScholarPubMed
Carucci, D. J., Yates, J. R. 3rd and Florens, L. (2002). Exploring the proteome of Plasmodium. International Journal for Parasitology 32, 15391542.CrossRefGoogle ScholarPubMed
Castilla, J. J., Sanchez-Moreno, M., Mesa, C. and Osuna, A. (1995). Leishmania donovani: in vitro culture and [1H] NMR characterization of amastigote-like forms. Molecular and Cellular Biochemistry 142, 8997.CrossRefGoogle ScholarPubMed
Castilho, P. C., Gouveia, S. C. and Rodrigues, A. I. (2008). Quantification of artemisinin in Artemisia annua extracts by 1H-NMR. Phytochemical Analysis 19, 329334.CrossRefGoogle ScholarPubMed
Chae, M., Shmookler Reis, R. J. and Thaden, J. J. (2008). An iterative block-shifting approach to retention time alignment that preserves the shape and area of gas chromatography-mass spectrometry peaks. BMC Bioinformatics 9 (Suppl 9), S15.CrossRefGoogle ScholarPubMed
Clayton, T. A., Baker, D., Lindon, J. C., Everett, J. R. and Nicholson, J. K. (2009). Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proceedings of the National Academy of Sciences, USA. 106, 1472814733.CrossRefGoogle ScholarPubMed
Correa, J. E., Ríos, C. H., del Rosario Castillo, A., Romero, L. I., Ortega-Barría, E., Coley, P. D., Kursar, T. A., Heller, M. V., Gerwick, W. H. and Rios, L. C. (2006). Minor alkaloids from Guatteria dumetorum with antileishmanial activity. Planta Medica 72, 270272.CrossRefGoogle ScholarPubMed
Cooper, R. A. and Carucci, D. J. (2004). Proteomic approaches to studying drug targets and resistance in Plasmodium. Current Drug Targets of Infectious Disorders 4, 4151.CrossRefGoogle ScholarPubMed
Coustou, V., Biran, M., Breton, M., Guegan, F., Rivière, L., Plazolles, N., Nolan, D., Barrett, M. P., Franconi, J. M. and Bringaud, F. (2008). Glucose-induced remodeling of intermediary and energy metabolism in procyclic Trypanosoma brucei. Journal of Biological Chemistry 283, 1634216354.CrossRefGoogle ScholarPubMed
Deslauriers, R., Ekiel, I., Kroft, T. and Smith, I. C. (1982). NMR studies of malaria. 31P nuclear magnetic resonance of blood from mice infected with Plasmodium berghei. Biochimica et Biophysica Acta 721, 449457.CrossRefGoogle ScholarPubMed
Deslauriers, R., Geoffrion, Y., Butler, K. W. and Smith, I. C. (1985). Magnetic resonance studies of the pathophysiology of murine malaria. Quarterly Reviews of Biophysics 18, 65–110.CrossRefGoogle ScholarPubMed
Deslauriers, R., Somorjai, R. L., Geoffrion, Y., Kroft, T., Smith, I. C. and Saunders, J. K. (1988). 1H and 13C NMR studies of tissue from normal and diseased mice. Analysis of T1 and T2 relaxation profiles of triglycerides in liver. NMR in Biomedicine 1, 3243.CrossRefGoogle ScholarPubMed
Domschke, A., March, W. F., Kabilan, S. and Lowe, C. (2006). Initial clinical testing of a holographic non-invasive contact lens glucose sensor. Diabetes Technology & Therapeutics 8, 8993.CrossRefGoogle ScholarPubMed
Doyle, M. A., MacRae, J. I., De Souza, D. P., Saunders, E. C., McConville, M. J. and Likić, V. A. (2009). LeishCyc: a biochemical pathways database for Leishmania major. BMC Systems Biology 3, 57.CrossRefGoogle ScholarPubMed
Dow, G., Bauman, R., Caridha, D., Cabezas, M., Du, F., Gomez-Lobo, R., Park, M., Smith, K. and Cannard, K. (2006). Mefloquine induces dose-related neurological effects in a rat model. Antimicrobial Agents and Chemotherapy 50, 10451053.CrossRefGoogle ScholarPubMed
Duran, A. L., Yang, J., Wang, L. and Sumner, L. W. (2003). Metabolomics spectral formatting, alignment and conversion tools (MSFACTs). Bioinformatics 19, 22832293.CrossRefGoogle ScholarPubMed
Ferguson, M. A. and Homans, S. W. (1988). Parasite glycoconjugates: towards the exploitation of their structure. Parasite Immunology 10, 465479.CrossRefGoogle ScholarPubMed
Fiehn, O. (2002). Metabolomics – the link between genotypes and phenotypes. Plant Molecular Biology 48, 155171.CrossRefGoogle ScholarPubMed
Garcia, G. E., Wirtz, R. A., Barr, J. R., Woolfitt, A. and Rosenberg, R. (1998). Xanthurenic acid induces gametogenesis in Plasmodium, the malaria parasite. Journal of Biological Chemistry 273, 1200312005.CrossRefGoogle ScholarPubMed
García-Pérez, I., Whitfield, P., Bartlett, A., Angulo, S., Legido-Quigley, C., Hanna-Brown, M. and Barbas, C. (2008). Metabolic fingerprinting of Schistosoma mansoni infection in mice urine with capillary electrophoresis. Electrophoresis 29, 32013206.CrossRefGoogle ScholarPubMed
Geoffrion, Y., Butler, K., Pass, M., Smith, I. C. and Deslauriers, R. (1985). Plasmodium berghei: gluconeogenesis in the infected mouse liver studied by 13C nuclear magnetic resonance. Experimental Parasitology 59, 364374.CrossRefGoogle Scholar
Giulivi, C., Ross-Inta, C., Horton, A. A. and Luckhart, S. (2008). Metabolic pathways in Anopheles stephensi mitochondria. Biochemical Journal 415, 309316.CrossRefGoogle ScholarPubMed
Goumon, Y., Casares, F., Pryor, S., Ferguson, L., Brownawell, B., Cadet, P., Rialas, C. M., Welters, I. D., Sonetti, D. and Stefano, G. B. (2000). Ascaris suum, an intestinal parasite, produces morphine. Journal of Immunology 165, 339343.CrossRefGoogle ScholarPubMed
Grant, D. M. and Harris, R. K. (1996). Encyclopedia of Nuclear Magnetic Resonance, Wiley, New York.Google Scholar
Gross, M. L. and Caprioli, R. M. (2003). Encyclopedia of Mass Spectrometry, 1st Edn. Elsevier Science and Technology.Google Scholar
Grycová, L., Dommisse, R., Pieters, L. and Marek, R. (2009). NMR determination of pK(a) values of indoloquinoline alkaloids. Magnetic Resonance in Chemistry 47, 977981.CrossRefGoogle ScholarPubMed
Guignard, S., Arienti, H., Freyre, L., Lujan, H. and Rubinstein, H. (2000). Prevalence of enteroparasites in a residence for children in the Córdoba Province, Argentina. European Journal of Epidemiology 16, 287293.CrossRefGoogle Scholar
Hall, K. A., Newton, P. N., Green, M. D., De Veij, M., Vandenabeele, P., Pizzanelli, D., Mayxay, M., Dondorp, A. and Fernandez, F. M. (2006). Characterization of counterfeit artesunate antimalarial tablets from southeast Asia. American Journal of Tropical Medicine and Hygiene 75, 804811.CrossRefGoogle ScholarPubMed
Hawkes, M. and Kain, K. C. (2007). Advances in malaria diagnosis. Expert Review of Anti-Infective Therapy 5, 485495.CrossRefGoogle ScholarPubMed
Holmes, E., Tang, H., Wang, Y. and Seger, C. (2006). The assessment of plant metabolite profiles by NMR-based methodologies. Planta Medica 72, 771785.CrossRefGoogle ScholarPubMed
Hua, H. M., Peng, J., Fronczek, F. R., Kelly, M. and Hamann, M. T. (2004). Crystallographic and NMR studies of antiinfective tricyclic guanidine alkaloids from the sponge Monanchora unguifera. Bioorganic & Medicinal Chemistry 12, 64616464.CrossRefGoogle ScholarPubMed
Hwang, S. H. and Nowak, T. (1986). Stereochemistry of phosphoenolpyruvate carboxylation catalyzed by phosphoenolpyruvate carboxykinase. Biochemistry. 25, 55905595.CrossRefGoogle ScholarPubMed
Johnson, J. R., Florens, L., Carucci, D. J. and Yates, J. R. 3rd. (2004). Proteomics in malaria. Journal of Proteome Research 3, 296306.CrossRefGoogle ScholarPubMed
Johnson, T. A., Amagata, T., Sashidhara, K. V., Oliver, A. G., Tenney, K., Matainaho, T., Ang, K. K., McKerrow, J. H. and Crews, P. (2009). The aignopsanes, a new class of sesquiterpenes from selected chemotypes of the sponge Cacospongia mycofijiensis. Organic Letters 11, 19751978.CrossRefGoogle ScholarPubMed
Jourdan, F., Breitling, R., Barrett, M. P. and Gilbert, D. (2008). MetaNetter: inference and visualization of high-resolution metabolomic networks. Bioinformatics 24, 143145.CrossRefGoogle ScholarPubMed
Kamleh, A., Barrett, M. P., Wildridge, D., Burchmore, R. J., Scheltema, R. A. and Watson, D. G. (2008). Metabolomic profiling using Orbitrap Fourier transform mass spectrometry with hydrophilic interaction chromatography: a method with wide applicability to analysis of biomolecules. Rapid Communications in Mass Spectrometry 22, 19121918.CrossRefGoogle ScholarPubMed
Karunajeewa, H. A., Ilett, K. F., Dufall, K., Kemiki, A., Bockarie, M., Alpers, M. P., Barrett, P. H., Vicini, P. and Davis, T. M. (2004). Disposition of artesunate and dihydroartemisinin after administration of artesunate suppositories in children from Papua New Guinea with uncomplicated malaria. Antimicrobial Agents and Chemotherapy 48, 29662972.CrossRefGoogle ScholarPubMed
Katajamaa, M. and Oresic, M. (2005). Processing methods for differential analysis of LC/MS profile data. BMC Bioinformatics 6, 179.CrossRefGoogle ScholarPubMed
Khalifa, S. I., Baker, J. K., Jung, M., McChesney, J. D. and Hufford, C. D. (1995). Microbial and mammalian metabolism studies on the semisynthetic antimalarial, deoxoartemisinin. Pharmaceutical Research 12, 14931498.CrossRefGoogle ScholarPubMed
Kittayapong, P., Clark, J. M., Edman, J. D., Potter, T. L., Lavine, B. K., Marion, J. R. and Brooks, M. (1990). Cuticular lipid differences between the malaria vector and non-vector forms of the Anopheles maculatus complex. Medical and Veterinary Entomology 14, 405413.CrossRefGoogle Scholar
Lacroix, V., Cottret, L., Thébault, P. and Sagot, M. F. (2008). An introduction to metabolic networks and their structural analysis. IEEE/ACM Transactions on Computational Biology and Bioinformatics 5, 594617.CrossRefGoogle Scholar
Lannang, A. M., Louh, G. N., Lontsi, D., Specht, S., Sarite, S. R., Flörke, U., Hussain, H., Hoerauf, A. and Krohn, K. (2008). Antimalarial compounds from the root bark of Garcinia polyantha Olv. Journal of Antibiotics (Tokyo) 61, 518523.CrossRefGoogle ScholarPubMed
Li, J. V., Holmes, E., Saric, J., Keiser, J., Dirnhofer, S., Utzinger, J. and Wang, Y. (2009). Metabolic profiling of a Schistosoma mansoni infection in mouse tissues using magic angle spinning-nuclear magnetic resonance spectroscopy. International Journal for Parasitology 39, 547558.CrossRefGoogle ScholarPubMed
Li, J. V., Wang, Y., Saric, J., Nicholson, J. K., Dirnhofer, S., Singer, B. H., Tanner, M., Wittlin, S., Holmes, E. and Utzinger, J. (2008). Global metabolic responses of NMRI mice to an experimental Plasmodium berghei infection. Journal of Proteome Research 7, 39483956.CrossRefGoogle Scholar
Lian, L. Y., Al-Helal, M., Roslaini, A. M., Fisher, N., Bray, P. G., Ward, S. A. and Biagini, G. A. (2009). Glycerol: an unexpected major metabolite of energy metabolism by the human malaria parasite. Malaria Journal 2009 Mar 6 8, 38.Google ScholarPubMed
Liu, F., Cui, S. J., Hu, W., Feng, Z., Wang, Z. Q. and Han, Z. G. (2009). Excretory/secretory proteome of the adult developmental stage of human blood fluke, Schistosoma japonicum. Molecular and Cellular Proteomics 8, 12361251.CrossRefGoogle ScholarPubMed
Lopes, N. P., Kato, M. J., Andrade, E. H., Maia, J. G., Yoshida, M., Planchart, A. R. and Katzin, A. M. (1999). Antimalarial use of volatile oil from leaves of Virola surinamensis (Rol.) Warb. by Waiãpi Amazon Indians. Journal of Ethnopharmacology 67, 313319.CrossRefGoogle ScholarPubMed
Ma, C., Wang, H., Lu, X., Li, H., Liu, B. and Xu, G. (2007). Analysis of Artemisia annua L. volatile oil by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. Journal of Chromatography A 1150, 5053.CrossRefGoogle ScholarPubMed
McConville, M. J. and Blackwell, J. M. (1991). Developmental changes in the glycosylated phosphatidylinositols of Leishmania donovani. Characterization of the promastigote and amastigote glycolipids. Journal of Biological Chemistry 266, 1517015179.CrossRefGoogle ScholarPubMed
Mehta, M., Sonawat, H. M. and Sharma, S. (2005). Malaria parasite-infected erythrocytes inhibit glucose utilization in uninfected red cells. FEBS Letters 579, 61516158.CrossRefGoogle ScholarPubMed
Mithwani, S., Aarons, L., Kokwaro, G. O., Majid, O., Muchohi, S., Edwards, G., Mohamed, S., Marsh, K. and Watkins, W. (2004). Population pharmacokinetics of artemether and dihydroartemisinin following single intramuscular dosing of artemether in African children with severe falciparum malaria. British Journal of Clinical Pharmacology 57, 146152.CrossRefGoogle ScholarPubMed
Moreno, B., Bailey, B. N., Luo, S., Martin, M. B., Kuhlenschmidt, M., Moreno, S. N., Docampo, R. and Oldfield, E. (2001). (31)P NMR of apicomplexans and the effects of risedronate on Cryptosporidium parvum growth. Biochemical and Biophysical Research Communications 284, 632637.CrossRefGoogle ScholarPubMed
Moreno, B., Urbina, J. A., Oldfield, E., Bailey, B. N., Rodrigues, C. O. and Docampo, R. (2000). 31P NMR spectroscopy of Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major. Evidence for high levels of condensed inorganic phosphates. Journal of Biological Chemistry 275, 2835628362.CrossRefGoogle ScholarPubMed
Moreno, H. R., Oatis, J. E. Jr. and Schultz, H. P. (1972). Quinoxaline studies. 20. Potential antimalarials. Synthesis of anti- and syn-N,N-dialkylaminomethyl 2-quinoxalinyl ketoximes. Journal of Medicinal Chemistry 15, 433434.CrossRefGoogle ScholarPubMed
Neal, J. M., Howald, W. N., Kunze, K. L., Lawrence, R. F. and Trager, W. F. (1994). Application of negative-ion chemical ionization isotope dilution gas chromatography-mass spectrometry to single-dose bioavailability studies of mefloquine. Journal of Chromatography B Biomedical Applications 661, 263269.CrossRefGoogle ScholarPubMed
Newton, P. N., Hampton, C. Y., Alter-Hall, K., Teerwarakulpana, T., Prakongpan, S., Ruangveerayuth, R., White, N. J., Day, N. P., Tudino, M. B., Mancuso, N. and Fernández, F. M. (2008). Characterization of “Yaa Chud” Medicine on the Thailand-Myanmar border: selecting for drug-resistant malaria and threatening public health. American Journal of Tropical Medicine and Hygiene 79, 662669.CrossRefGoogle ScholarPubMed
Nicholson, J. K., Lindon, J. C. and Holmes, E. (1999). ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29, 11811189.CrossRefGoogle Scholar
Nishina, M., Hori, E., Matsushita, K., Takahashi, M., Kato, K. and Ohsaka, A. (1988). 1H-NMR spectroscopic study of serums from patients with malaria. Physiological Chemistry & Physics & Medical NMR 20, 269271.Google ScholarPubMed
Nishina, M., Hori, E., Matsushita, K., Takahashi, M., Kato, K. and Ohsaka, A. (1990). Application of 15N-nuclear magnetic resonance (N.M.R.) spectroscopy for the study of nitrogen metabolism of a parasite: transamination in Angiostrongylus cantonensis eggs. International Journal for Parasitology 20, 131132.Google Scholar
Nishina, M., Suzuki, M. and Matsushita, K. (2004). Trichinella spiralis: activity of the cerebral pyruvate recycling pathway of the host (mouse) in hypoglycemia induced by the infection. Experimental Parasitology 106, 6265.CrossRefGoogle ScholarPubMed
Novak, M., Hameed, N., Buist, R. and Blackburn, B. J. (1992). Metabolites of alveolar Echinococcus as determined by [31P]- and [1H]-nuclear magnetic resonance spectroscopy. Parasitology Research 78, 665670.CrossRefGoogle ScholarPubMed
Olsen, R. E. (1972). Antimalarial activity and conformation of erythro- and threo-(2-piperidyl)-3,6-bis(trifluoromethyl)-9-phenanthrenemethanol. Journal of Medicinal Chemistry 15, 207208.CrossRefGoogle Scholar
Olszewski, K. L., Morrisey, J. M., Wilinski, D., Burns, J. M., Vaidya, A. B., Rabinowitz, J. D. and Llinás, M. (2009). Host-parasite interactions revealed by Plasmodium falciparum metabolomics. Cell Host and Microbe 5, 191199.CrossRefGoogle ScholarPubMed
Parekh, S. B., Bubb, W. A., Hunt, N. H. and Rae, C. (2006). Brain metabolic markers reflect susceptibility status in cytokine gene knockout mice with murine cerebral malaria. International Journal for Parasitology 36, 14091418.CrossRefGoogle ScholarPubMed
Paveto, C., Güida, M. C., Esteva, M. I., Martino, V., Coussio, J., Flawiá, M. M. and Torres, H. N. (2004). Anti-Trypanosoma cruzi activity of green tea (Camellia sinensis) catechins. Antimicrobial Agents and Chemotherapy 48, 6974.CrossRefGoogle ScholarPubMed
Penet, M. F., Kober, F., Confort-Gouny, S., Le Fur, Y., Dalmasso, C., Coltel, N., Liprandi, A., Gulian, J. M., Grau, G. E., Cozzone, P. J. and Viola, A. (2007). Magnetic resonance spectroscopy reveals an impaired brain metabolic profile in mice resistant to cerebral malaria infected with Plasmodium berghei ANKA. Journal of Biological Chemistry 282, 1450514514.CrossRefGoogle ScholarPubMed
Plumb, R., Castro-Perez, J., Granger, J., Beattie, I., Joncour, K. and Wright, A. (2004). Ultra-performance liquid chromatography coupled to quadrupole-orthogonal time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry 18, 23312337.CrossRefGoogle ScholarPubMed
Rae, C., Maitland, A., Bubb, W. A. and Hunt, N. H. (2000). Dichloroacetate (DCA) reduces brain lactate but increases brain glutamine in experimental cerebral malaria: a 1H-NMR study. Redox Report 5, 141143.CrossRefGoogle Scholar
Raso, G., Vounatsou, P., Singer, B. H., N'Goran, E. K., Tanner, M. and Utzinger, J. (2006). An integrated approach for risk profiling and spatial prediction of Schistosoma mansoni-hookworm coinfection. Proceedings of the National Acadamy of Sciences, USA 103, 69346939.CrossRefGoogle ScholarPubMed
Richards, S. E., Wang, Y., Lawler, D., Kochhar, S., Holmes, E., Lindon, J. C. and Nicholson, J. K. (2008). Self-modeling curve resolution recovery of temporal metabolite signal modulation in NMR spectroscopic data sets: application to a life-long caloric restriction study in dogs. Analytical Chemistry 80, 48764885.CrossRefGoogle ScholarPubMed
Roberts, S. B., Robichaux, J. L., Chavali, A. K., Manque, P. A., Lee, V., Lara, A. M., Papin, J. A. and Buck, G. A. (2009). Proteomic and network analysis characterize stage-specific metabolism in Trypanosoma cruzi. BMC Systems Biology 3, 52.CrossRefGoogle ScholarPubMed
Robosky, L. C., Wells, D. F., Egnash, L. A., Manning, M. L., Reily, M. D. and Robertson, D. G. (2005). Metabonomic identification of two distinct phenotypes in Sprague-Dawley(Crl:CD(SD)) rats. Toxicological Sciences 87, 277284.CrossRefGoogle ScholarPubMed
Rohrer, S. P., Saz, H. J. and Nowak, T. (1986). 31P-NMR studies of the metabolisms of the parasitic helminths Ascaris suum and Fasciola hepatica. Archives of Biochemistry and Biophysics 248, 200209.CrossRefGoogle ScholarPubMed
Roumy, V., Fabre, N., Portet, B., Bourdy, G., Acebey, L., Vigor, C., Valentin, A. and Moulis, C. (2009). Four anti-protozoal and anti-bacterial compounds from Tapirira guianensis. Phytochemistry 70, 305311.CrossRefGoogle ScholarPubMed
San George, R. C., Nagel, R. L. and Fabry, M. E. (1984). On the mechanism for the red-cell accumulation of mefloquine, an antimalarial drug. Biochimica et Biophysica Acta 803, 174181.CrossRefGoogle ScholarPubMed
Sanni, L. A., Thomas, S. R., Tattam, B. N., Moore, D. E., Chaudhri, G., Stocker, R. and Hunt, N. H. (1998). Dramatic changes in oxidative tryptophan metabolism along the kynurenine pathway in experimental cerebral and noncerebral malaria. American Journal of Pathology 152, 611619.Google ScholarPubMed
Saric, J., Li, J. V., Wang, Y., Keiser, J., Bundy, J. G., Holmes, E. and Utzinger, J. (2008). Metabolic profiling of an Echinostoma caproni infection in the mouse for biomarker discovery. PLoS Neglected Tropical Diseases 2, e254.CrossRefGoogle ScholarPubMed
Saric, J., Li, J. V., Wang, Y., Keiser, J., Veselkov, K., Dirnhofer, S., Yap, I. K., Nicholson, J. K., Holmes, E. and Utzinger, J. (2009). Panorganismal metabolic response modeling of an experimental Echinostoma caproni infection in the mouse. Journal of Proteome Research 8, 38993911.CrossRefGoogle ScholarPubMed
Scheltema, R. A., Kamleh, A., Wildridge, D., Ebikeme, C., Watson, D. G., Barrett, M. P., Jansen, R. C. and Breitling, R. (2008). Increasing the mass accuracy of high-resolution LC-MS data using background ions: a case study on the LTQ-Orbitrap. Proteomics 8, 46474656.CrossRefGoogle ScholarPubMed
Schoen, J., Modha, A., Maslow, K., Novak, M. and Blackburn, B. J. (1996). A NMR study of parasitized Tenebrio molitor and Hymenolepis diminuta cysticercoids. International Journal for Parasitology 26, 713722.CrossRefGoogle ScholarPubMed
Sengaloundeth, S., Green, M. D., Fernández, F. M., Manolin, O., Phommavong, K., Insixiengmay, V., Hampton, C. Y., Nyadong, L., Mildenhall, D. C., Hostetler, D., Khounsaknalath, L., Vongsack, L., Phompida, S., Vanisaveth, V., Syhakhang, L. and Newton, P. N. (2009). A stratified random survey of the proportion of poor quality oral artesunate sold at medicine outlets in the Lao PDR – implications for therapeutic failure and drug resistance. Malaria Journal 8, 172.CrossRefGoogle ScholarPubMed
Shukla-Dave, A., Degaonkar, M., Roy, R., Murthy, P. K., Murthy, P. S., Raghunathan, P. and Chatterjee, R. K. (1999). Metabolite mapping of human filarial parasite, Brugia malayi with nuclear magnetic resonance. Magnetic Resonance Imaging 17, 15031509.CrossRefGoogle ScholarPubMed
Shukla-Dave, A., Roy, R., Bhaduri, A. P. and Chatterjee, R. K. (2000). Effects of 2-deoxy-D-glucose on Acanthocheilonema viteae: rodent filariids as studied by multinuclear NMR spectroscopy. Physiological Chemistry and Physics and Medical NMR 32, 112.Google Scholar
Singer, B. H., Utzinger, J., Ryff, C. D., Wang, Y. and Holmes, E. (2007). Exploiting the potential of metabonomics in large population studies: three venues. In Handbook of Metabonomics and Metabolomics (Eds. Lindon, J. C., Nicholson, J. K. and Holmes, E.), 1st edn. Elsevier B.V.Google Scholar
Steinmann, P., Du, Z. W., Wang, L. B., Wang, X. Z., Jiang, J. Y., Li, L. H., Marti, H., Zhou, X. N. and Utzinger, J. (2008). Extensive multiparasitism in a village of Yunnan province, People's Republic of China, revealed by a suite of diagnostic methods. American Journal of Tropical Medicine and Hygiene 78, 760769.CrossRefGoogle Scholar
Teng, R., Junankar, P. R., Bubb, W. A., Rae, C., Mercier, P. and Kirk, K. (2009). Metabolite profiling of the intraerythrocytic malaria parasite Plasmodium falciparum by (1)H NMR spectroscopy. NMR in Biomedicine 22, 292302.CrossRefGoogle Scholar
Thompson, S. N. and Lee, R. W. (1986). Comparison of starvation and infection by Schistosoma mansoni on tissue viability and the 31P NMR spectrum of Biomphalaria glabrata. Zeitschrift für Parasitenkunde 72, 417421.CrossRefGoogle ScholarPubMed
Thompson, S. N. and Lee, R. W. (1987). Characterization of the 31P NMR spectrum of the schistosome vector Biomphalaria glabrata and of the changes following infection by Schistosoma mansoni. Journal of Parasitology 73, 6476.CrossRefGoogle ScholarPubMed
Thompson, S. N., Lee, R. W., Mejia-Scales, V. and Shams el-Din, M. (1993). Biochemical and morphological pathology of the foot of the schistosome vector Biomphalaria glabrata infected with Schistosoma mansoni. Parasitology 107, 275285.CrossRefGoogle ScholarPubMed
Thompson, S. N., Platzer, E. G. and Lee, R. W. (1992). Phosphoarginine-adenosine triphosphate exchange detected in vivo in a microscopic nematode parasite by flow 31P FT-NMR spectroscopy. Magnetic Resonance in Medicine 28, 311317.CrossRefGoogle Scholar
Thysell, E., Pohjanen, E., Lindberg, J., Schuppe-Koistinen, I., Moritz, T., Jonsson, P. and Antti, H. (2007). Reliable profile detection in comparative metabolomics. OMICS 11, 209224.CrossRefGoogle ScholarPubMed
Trygg, J., Holmes, E. and Lundstedt, T. (2007). Chemometrics in metabonomics. Journal of Proteome Research 6, 469479.CrossRefGoogle ScholarPubMed
Trygg, J. and Wold, S. (2002). Orthogonal projections to latent structures (OPLS). Journal of Chemometrics 16, 119128.CrossRefGoogle Scholar
Veselkov, K. A., Lindon, J. C., Ebbels, T. M., Crockford, D., Volynkin, V. V., Holmes, E., Davies, D. B. and Nicholson, J. K. (2009). Recursive segment-wise peak alignment of biological (1)H NMR spectra for improved metabolic biomarker recovery. Analytical Chemistry 81, 5666.CrossRefGoogle ScholarPubMed
Wang, Y., Holmes, E., Nicholson, J. K., Cloarec, O., Chollet, J., Tanner, M., Singer, B. H. and Utzinger, J. (2004). Metabonomic investigations in mice infected with Schistosoma mansoni: an approach for biomarker identification. Proceedings of the National Academy of Sciences, USA 101, 1267612681.CrossRefGoogle ScholarPubMed
Wang, Y., Utzinger, J., Saric, J., Li, J. V., Burckhardt, J., Dirnhofer, S., Nicholson, J. K., Singer, B. H., Brun, R. and Holmes, E. (2008). Global metabolic responses of mice to Trypanosoma brucei brucei infection. Proceedings of the National Academy of Sciences, USA 105, 61276132.CrossRefGoogle ScholarPubMed
Wang, Y., Utzinger, J., Xiao, S. H., Xue, J., Nicholson, J. K., Tanner, M., Singer, B. H. and Holmes, E. (2006). System level metabolic effects of a Schistosoma japonicum infection in the Syrian hamster. Molecular and Biochemical Parasitology 146, 19.CrossRefGoogle ScholarPubMed
Webb-Robertson, B. J., McCue, L. A., Beagley, N., McDermott, J. E., Wunschel, D. S., Varnum, S. M., Hu, J. Z., Isern, N. G., Buchko, G. W., Mcateer, K., Pounds, J. G., Skerrett, S. J., Liggitt, D. and Frevert, C. W. (2009). A Bayesian integration model of high-throughput proteomics and metabolomics data for improved early detection of microbial infections. Pacific Symposium on Biocomputing, 14, World Scientific Publishing Co., Singapore, 451463.Google Scholar
Weber, N., Vosmann, K., Aitzetmüller, K., Filipponi, C. and Taraschewski, H. (1994). Sterol and fatty acid composition of neutral lipids of Paratenuisentis ambiguus and its host eel. Lipids 29, 421427.CrossRefGoogle ScholarPubMed