Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-13T15:47:54.489Z Has data issue: false hasContentIssue false

Glycans with N-acetyllactosamine type 2-like residues covering adult Schistosoma mansoni, and glycomimesis as a putative mechanism of immune evasion

Published online by Cambridge University Press:  06 April 2009

J. Schmidt
Affiliation:
Division of Morphology and Cell Biology, Institute of Zoology, University, 40225 Düsseldorf, Germany

Summary

Glycans at the surface of adult Schistosoma mansoni were investigated with gold-labelled lectins. The fragile complex of the glycans with the outer membranes could be preserved for electron microscopy by avoiding extensive pre-fixation with aldehydes and by introducing osmium-ferrocyanide as a membrane fixative. Male and female worms were entirely covered with glycans that intensely bound lectins from Erythrina cristagalli and Datura stramonium, suggesting that galactose(β1–4)N-acetylglucosamine residues occur in high numbers in the surface glycans. Similar staining was obtained with lectins from Triticum vulgaris, Glycine max and Ricinus communis agglutinin I, which react with N-acetylglucosamine or terminal galactose residues and bind non-selectively with high affinity to N-acetyllactosamine. Fucose, N-acetylgalactose and sialic acid were not detected with lectins and sialidase treatment. The tegument contained an abundance of glycans with the same lectin reactivities as the surface-expressed molecules, indicating that the worms synthesize and replenish their surface glycans and do not merely adsorb host substances. Glycomimesis is discussed as a mechanism of immune evasion in view of N-acetyllactosamine being a common and weakly immunogenic component in glycans of vertebrate hosts. S. mansoni might disguise themselves with the glycans against attack by immune effectors.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bhattacharyya, L., Haraldsson, M. & Brewer, C. F. (1988). Precipitation of galactose-specific lectins by complex-type oligosaccharides and glycopeptides: studies with lectins from Ricinus communis, Erythrina indica, Erythrina arborescens, Abrus precatorius and Glycine max. Biochemistry 27, 1034–41.CrossRefGoogle ScholarPubMed
Conradt, U. & Schmidt, J. (1992). A double surface membrane in plerocercoids of Ligula intestinalis (Cestoda: Pseudophyllidea). Parasitology Research 78, 123–9.CrossRefGoogle ScholarPubMed
Crowley, J. F., Goldstein, I. J., Arnarp, J. & Lönngren, J. (1984). Carbohydrate binding studies on the lectin from Datura stramonium seeds. Archives of Biochemistry and Biophysics 231, 524–33.CrossRefGoogle ScholarPubMed
Cummings, R. D. & Kornfeld, S. (1984). The distribution of repeating Ga1β1, 4G1cNAcβ1, 3 sequences in asparagine-linked oligosaccharides of the mouse lymphoma cell lines BW5147 and PHAR 2.1. Binding of oligosaccharides to immobilized Datura stramonium agglutinin. Journal of Biological Chemistry 259, 6253–60.CrossRefGoogle Scholar
Cushley, W. & Kusel, J. R. (1987). Interaction of the plant toxin ricin with different life cycle stages of Schistosoma monsoni. Molecular and Biochemical Parasitology 24, 6771.CrossRefGoogle Scholar
Damian, R. T. (1964). Molecular mimicry: Antigen sharing by parasite and host and its consequences. American Naturalist 98, 129–49.Google Scholar
Dean, D. A. (1977). Decreased binding of cytotoxic antibodies by developing Schistosoma. Evidence for surface change independent of host antigen adsorption and membrane turnover. Journal of Parasitology 63, 418–26.Google ScholarPubMed
De Boeck, H., Loontiens, F. G., Lis, H. & Sharon, N. (1984). Binding of simple carbohydrates and some N-acetyllactosamine containing oligosaccharides to Erythrina cristagalli lectin as followed with a fluorescence indicator ligand. Archives of Biochemistry and Biophysics 234, 297304.CrossRefGoogle Scholar
De Bruijn, W. C. & Den Breejen, P. (1976). Glycogen, its chemistry and morphologic appearance in the electron microscope. III. Identification of the tissue ligands involved in the glycogen contrast staining reaction with the osmium(VI)-iron(II) complex. Histochemical Journals, 121–42.Google Scholar
Dessein, A., Samuelson, J. C., Butterworth, A. E., Hogan, M., Sherry, B. A., Vades, M. A. & David, J. R. (1981). Immune evasion by Schistosoma mansoni: loss of susceptibility to antibody or complement-mediated eosinophil attack by schistosomula cultured in medium free of macromolecules. Parasitology 82, 357–74.CrossRefGoogle ScholarPubMed
Etzler, M. E., Gupta, S. & Borrebaeck, C. (1981). Carbohydrate binding properties of the Dolichos biflorus lectin and its subunits. Journal of Biological Chemistry 256, 2367–70.Google ScholarPubMed
Feizi, T. (1981). The blood group li system: a carbohydrate antigen system defined by naturally monoclonal or oligoclonal autoantibodies of man. Immunology Communications 10, 127–56.CrossRefGoogle ScholarPubMed
Frens, G. (1973). Controlled nucleation for the regulation of particle size in monodisperse gold solutions. Nature (Physical Science) 241, 20–2.Google Scholar
Fukuda, M. (1985). Cell surface glycoconjugates as onco-difierentiation markers in hematopoietic cells. Biochimica et Biophysica Acta 780, 119–50.Google ScholarPubMed
Gallagher, J. T., Morris, A. & Dexter, T. M. (1985). Identification of two binding sites for wheat-germ agglutinin on polylactosamine-type oligosaccharides. The Biochemical Journal 231, 115–22.CrossRefGoogle ScholarPubMed
Gearner, G. W. & Kemp, W. M. (1994). Electrophoretic and serological analysis of host antigens associated with the adult Schistosoma mansoni tegument. Journal of Parasitology 80, 275–83.Google ScholarPubMed
Goldring, O. L., Kusel, J. R. & Smithers, S. R. (1977). Schistosoma mansoni: Origin in vitro of host-like surface antigens. Experimental Parasitology 43, 8293.CrossRefGoogle ScholarPubMed
Goldstein, I. J., Hammarström, S. & Sundblad, G. (1975). Precipitation and carbohydrate-binding specifity studies on wheat germ agglutinin. Biochemica et Biophysica Acta 405, 5361.CrossRefGoogle ScholarPubMed
Goodman, S. L., Hodges, G. M., Trejdosiewicz, L. K. & Livingston, D. C. (1981). Colloidal gold markers and probes for routine application in microscopy. Journal of Microscopy 123, 201–13.CrossRefGoogle ScholarPubMed
Hammarström, S., Murphy, L. A., Goldstein, I. J. & Etzler, M. E. (1977). Carbohydrate binding specifity of four N-acetyl-D-galactosamine specific lectins: Helix pomatia hemagglutinin, soy bean agglutinin, lima bean lectin, and Dolichos biflorus lectin. Biochemistry 16, 2750–5.CrossRefGoogle ScholarPubMed
Harn, D. A., Quinn, J. J., Cianci, C. M. & Ko, A. I. (1987). Evidence that a protective membrane epitope is involved in early but not late phase immunity in Schistosoma mansoni. Journal of Immunology 138, 1571–80.Google Scholar
Harnett, W., Kusel, J. R. & Barrowman, M. M. (1985). The use of aldehydes to show a relationship between host and parasite antigens at the surface of adult male Schistosoma mansoni. Parasite Immunology 7, 415–28.Google ScholarPubMed
Hockley, D. J. & McLaren, D. J. (1973). Schistosoma mansoni: changes in the outer membrane of the tegument during development from cercariae to adult worms. International Journal for Parasitology 3, 1325.Google Scholar
Horisberger, M. & Rosset, J. (1977). Localization of wheat germ agglutinin receptor sites on yeast cells by scanning electron microscopy. Experientia 32, 9981000.CrossRefGoogle Scholar
Iglesias, J. L., Lis, H. & Sharon, N. (1982). Purification and properties of a D-galactose/N-acetylgalactosamine-specific lectin from Erythrina cristagalli. European Journal of Biochemistry 123, 247–52.CrossRefGoogle Scholar
Kaladas, P. M., Kabat, E. A., Iglesias, J. L., Lis, H. & Sharon, N. (1982). Immunochemical studies on the combining site of the D-galactose/N-acetyl-D-galactosamine specific lectin from Erythrina cristagalli seeds. Archives of Biochemistry and Biophysics 217, 624–37.CrossRefGoogle ScholarPubMed
Karnowsky, M. J. (1971). Use of ferrocyanide-reduced osmium tetroxide in electron microscopy. Proceedings of the 11th Annual Meeting of the American Society for Cell Biology, p. 146, (abstract 284).Google Scholar
Ko, A. I., DräGer, U. C. & Harn, D. A. (1990). A Schistosoma mansoni epitope monoclonal antibody is identical to the stage-specific embryonic antigen 1. Proceedings of the National Academy of Sciences, USA 87, 4159–63.Google Scholar
Langley, J. G. & Dunne, D. W. (1992). Temporal variation in the carbohydrate and peptide surface epitopes in antibody-dependent, eosinophil-mediated killing of Schistosoma mansoni schistosomula. Parasite Immunology 14, 185200.CrossRefGoogle ScholarPubMed
Linder, E. & Huldt, G. (1982). Distribution of exposed and hidden carbohydrates of Schistosoma mansoni adult worms demonstrated by selective lectin binding of fluorochrome conjugated lectins. Parasitology 85, 503–9.CrossRefGoogle ScholarPubMed
McDiarmid, S. S. & Podesta, R. B. (1984). Identification of sialic acid containing glycocalyx of Schistosoma mansoni. Molecular and Biochemical Parasitology 10, 3343.CrossRefGoogle ScholarPubMed
McLaren, D. J. (1980). Schistosoma mansoni: the parasite surface in relation to host immunity. In Tropical Medicine Research Studies (ed. Brown, K. N.), Vol. 1. Chichester: Wiley Research Studies Press.Google Scholar
McLaren, D. J. (1984). Disguise as an evasive strategem of parasitic organisms. Parasitology 88, 597611.CrossRefGoogle Scholar
Murrell, K. D., Taylor, D. W., Vannier, W. E. & Dean, D. A. (1978). Schistosoma mansoni: analysis of the surfaa membrane carbohydrates. Experimental Parasitology 46, 247–55.CrossRefGoogle ScholarPubMed
Nyame, K., Cummings, R. D. & Damian, R. T. (1987). Schistosoma mansoni synthesizes glycoproteins containing terminal O-linked N-acetylglucosamine residues. Journal of Biological Chemistry 262, 7990–5.CrossRefGoogle ScholarPubMed
Pereira, M. F. A., Kabat, E. A., Lotan, R. & Sharon, N. (1976). Immunochemical studies on the specifity of the peanut (Arachis hypogaea) agglutinin. Carbohydrate Research 51, 107–18.Google ScholarPubMed
Pereira, M. F. A., Kisailus, E. C., Gruezo, F. & Kabat, E. A. (1978). Immunochemical studies on the combining site of the blood group H-specific lectin from Ulex europeus seeds. Archives of Biochemistry and Biophysics 185, 108–15.CrossRefGoogle ScholarPubMed
Rauvala, H. & Finne, J. (1979). Structural similarity of the terminal carbohydrate sequences of glycoproteins and glycolipids. FEBS Letters 97, 18.CrossRefGoogle ScholarPubMed
Rivera-Marrero, C. A. & Cummings, R. D. (1990). Schistosoma mansoni contains a galactosyltransferase activity distinct from that typically found in mammalian cells. Molecular and Biochemical Parasitology 43, 5968.Google ScholarPubMed
Saunders, N., Wilson, R. A. & Coulson, P. S. (1987). The outer bilayer of the adult schistosome tegument surface has a low turnover rate in vitro and in vivo. Molecular and Biochemical Parasitology 25, 123–31.CrossRefGoogle Scholar
Schmidt, J. (1988). Expression of glycoconjugates on normally developing and immunologically impaired Hymenolepis diminuta. Parasitology Research 75, 155–61.Google ScholarPubMed
Schmidt, J. (1989). Localization and characterization of glycoconjugates of the tegument of parasitic Platyhelminthes (text in German). Doctoral Dissertation, University of Düsseldorf, Germany.Google Scholar
Schmidt, J. (1992). N-acetyllactosamine containing glycoconjugates of the tegument surface and immune evasion by parasitic Platyhelminthes. Zentralblatt für Bakteriologie und Hygiene 325, 79.Google Scholar
Schmidt, J. & Peters, W. (1987). Localization of glycoconjugates at the surface of the tegument of the tapeworms Hymenolepis nana and Hymenolepis microstoma with gold labelled lectins. Parasitology Research 73, 80–6.CrossRefGoogle ScholarPubMed
Simpson, A. J. G., Correa-Oliveira, R., Smithers, S. R. & Sher, A. (1983). The exposed carbohydrates of schistosomula of Schistosoma mansoni and their modification during maturation in vivo. Molecular and Biochemical Parasitology 8, 191205.CrossRefGoogle ScholarPubMed
Simpson, A. J. G., Payares, G., Walker, T., Knight, M. & Smithers, S. R. (1984). The modulation of expression of polypeptide surface antigens on developing schistosomula of Schistosoma mansoni. Journal of Immunology 133, 2725–30.Google ScholarPubMed
Simpson, A. J. G. & Smithers, S. R. (1980). Characterization of the exposed carbohydrates on the surface membrane of adult Schistosoma mansoni by analysis of lectin binding. Parasitology 81, 115.CrossRefGoogle ScholarPubMed
Slot, J. W. & Geuze, H. J. (1985). A new method of preparing gold probes for multiple-labeling cytochemistry. European Journal of Cell Biology 38, 8793.Google ScholarPubMed
Sprent, J. F. A. (1962). Parasitism, immunity and evolution. In The Evolution of Living Organisms, (ed. Leeper, G. W.) Symposium of the Royal Society of Victoria, Melbourne, 1959, pp. 149–165. Melbourne, Australia: University Press.Google Scholar
Springall, D. R., Hacker, G. W., Grimelius, L. & Polak, J. M. (1984). The potential of the immunogold-silver staining method for paraffin sections. Histochemistry 8, 603–8.CrossRefGoogle Scholar
Srivatsan, J., Smith, D. F. & Cummings, R. D. (1992). The human blood fluke Schistosoma mansoni synthesizes glycoproteins containing the Lewis X antigen. Journal of Biological Chemistry 267, 20196–203.Google ScholarPubMed
Sueyoshi, S., Tsuji, T. & Osawa, T. (1988). Carbohydrate binding specifities of five lectins that bind to O-glycosyl-linked carbohydrate chains. Carbohydrate Research 178, 213–24.CrossRefGoogle ScholarPubMed
Vierbuchen, M., Uhlenbruck, G., Ortmann, M., Dufhues, G. & Fischer, R. (1988). Occurrence and distribution of glycoconjugates in human tissues as detected by the Erythrina cristagalli lectin. Journal of Histochemistry and Cytochemistry 36, 367–76.CrossRefGoogle ScholarPubMed
Wickler, W. (1968). Mimicry. New York, Toronto: McGraw-Hill.Google Scholar
Wu, A. M., Such, S., Gruezo, F. G. & Kabat, E. A. (1988). Immunochemical studies on the N-acetyllactosamine β(1–4)-linked trisaccharide specifity of Ricinus communis agglutinin. Carbohydrate Research 178, 243–57.Google Scholar