Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T19:44:22.046Z Has data issue: false hasContentIssue false

Major sperm protein and actin genes in free-living and parasitic nematodes

Published online by Cambridge University Press:  06 April 2009

A. L. Scott
Affiliation:
Department of Immunology and Infectious Diseases, School of Hygiene and Public Health, The Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205
J. Dinman
Affiliation:
Department of Immunology and Infectious Diseases, School of Hygiene and Public Health, The Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205
D. J. Sussman
Affiliation:
Department of Immunology and Infectious Diseases, School of Hygiene and Public Health, The Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205
S. Ward
Affiliation:
Department of Embryology, Carnegie Institution of Washington, 115 West University Parkway, Baltimore, MD 21210

Summary

The DNA from a number of free-living and parasitic nematode species was examined to determine the genomic number and distribution of DNA sequences encoding two evolutionary conserved proteins; the major sperm protein (MSP) and nematode actin. Ascaris and Caenorhabditis MSP cDNA sequences and Ascaris genomic actin sequences were used to probe Southern blots of Eco RI and Hin d III digested nematode DNA. The number of MSP genes varied widely between the 1 MSP gene in Ascaris and the 60 MSP genes in Caenorhabditis. Filarial nematodes appeared to have 1—4 MSP genes while the plant and insect parasitic species showed from 5–12 MSP-hybridizing restriction fragments. Mammalian intestinal parasites showed between 1 and 13 bands hybridizing with the MSP probes. Blots probed to estimate the number of actin genes showed that, with the exception of Ascaris which contains more than 20 germ line sequences that encode actin, all of the nematodes tested had between 3 and 9 bands that hybridized to the Ascaris genomic actin probe. The possible use of highly conserved sequences such as MSP and actin to differentiate between nematode species in diagnostic and taxonomic studies is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anya, A. O. (1976). Physiological aspects of reproduction in nematodes. Advances in Parasitology 14, 267351.CrossRefGoogle ScholarPubMed
Bennett, K. L. & Ward, S. (1986). Neither a germ line-specific nor several somatically expressed genes are lost or rearranged during embryonic chromatin diminution in the nematode Ascaris lumbricoides var. suum. Developmental Biology 118, 141–7.CrossRefGoogle ScholarPubMed
Burke, D. J. & Ward, S. (1983). Identification of a large multigene family encoding the major sperm protein of Caenorhabditis elegans. Journal of Molecular Biology 171, 129.CrossRefGoogle ScholarPubMed
Church, G. M. & Gilbert, W. (1984). Genomic sequencing. Proceedings of the National Academy of Sciences, USA 81, 1991–5.CrossRefGoogle ScholarPubMed
Emmons, S. W., Yesner, L., Ruan, K. & Katzenberg, D. (1983). Evidence for a transposon in Caenorhabditis elegans. Cell 32, 5565.CrossRefGoogle ScholarPubMed
Erttmann, K. D., Unasch, T. R., Greene, B. M., Albiez, E. J., Denke, A. M., Ferraroni, J. J., Karam, M., Schultz-Key, H. & Williams, P. N. (1987). A DNA sequence specific for forest form Onchocerca volvulus. Nature, London 327, 415–17.CrossRefGoogle ScholarPubMed
Feinberg, A. P. & Vogelstein, B. (1983). A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 132, 613.CrossRefGoogle ScholarPubMed
Field, K. G., Olsen, G. J., Lane, D. J., Giovannoni, S. J., Ghiselin, M. T., Raff, E. C., Pace, N. R. & Raff, R. A. (1988). Molecular phylogeny of the animal kingdom. Science 239, 748–53.CrossRefGoogle ScholarPubMed
Files, J. G., Carr, S. & Hirsh, D. (1983). Actin gene family of Caenorhabditis elegans. Journal of Molecular Biology 164, 355–75.CrossRefGoogle ScholarPubMed
Gill, L. L., Hardman, N., Chappell, L., Qu, L. H., Nicoloso, M. & Bachellerie, J. (1988). Phylogeny of Onchocerca volvulus and related species deduced from rRNA sequence comparisons. Molecular and Biochemical Parasitology 28, 6976.CrossRefGoogle ScholarPubMed
Karn, J., Brenner, S. & Barnett, L. (1983). Protein structural domains in the Caenorhabditis elegans unc-54 myosin heavy chain gene are not separated introns. Proceedings of the National Academy of Sciences, USA 80, 4253–7.CrossRefGoogle Scholar
Klass, M., Ammons, D. & Ward, S. (1988). Conservation in the 5′ flanking sequences of transcribed members of the Caenorhabditis elegans major sperm protein gene family. Journal of Molecular Biology 199, 1522.CrossRefGoogle ScholarPubMed
Klass, M., Dow, B. & Herndon, M. (1982). Cell-Specific transcriptional regulation of the major sperm protein in Caenorhabditis elegans. Developmental Biology 93, 152–64.CrossRefGoogle ScholarPubMed
Klass, M. R., Kingsley, S. & Lopez, L. C. (1984). Isolation and characterization of a sperm-specific gene family in the nematode Caenorhabditis elegans. Molecular and Cellular Biology 4, 529–73.Google ScholarPubMed
Krause, M. & Hirsh, D. (1987). A trans-spliced leader sequence on actin mRNA in C. elegans. Cell 49, 753–61.CrossRefGoogle ScholarPubMed
McReynolds, L. A., DeSimone, S. M. & Williams, S. A. (1986). Cloning and comparison of repeated DNA sequence from the human filarial parasite Brugia malayi and the animal parasite Brugia pahangi. Proceedings of the National Academy of Sciences, USA 83, 797801.CrossRefGoogle ScholarPubMed
Meinkoth, J. & Whal, G. (1984). Hybridization of nucleic acids immobilized on solid supports. Analytical Biochemistry 138, 267–84.CrossRefGoogle ScholarPubMed
Nelson, G. A. & Ward, S. (1981). Amoeboid motility and actin in Ascaris lumbricoides sperm. Experimental Cell Research 131, 149–60.CrossRefGoogle ScholarPubMed
Ohama, T., Kumazaki, T., Hori, H. & Ozawa, S. (1984). Evolution of multicellular animals as deduced from 5S rRNA sequences: a possible early emergence of the Mesozoa. Nucleic Acids Research 12, 5101–8.CrossRefGoogle ScholarPubMed
Perler, F. B. & Karam, M. (1986). Cloning and characterization of two Onchocerca volvulus repeated DNA sequences. Molecular and Biochemical Parasitology 21, 171–8.CrossRefGoogle ScholarPubMed
Poiner, G. O. (1983). The Natural History of Nematodes. Prentice-Hall, Englewood Clifts, NJ.Google Scholar
Qu, L. H., Hardman, N., Gill, L., Chappell, L., Nicoloso, M. & Bachellerie, J. (1986). Phylogeny of helminths determined by rRNA sequence comparison. Molecular and Biochemical Parasitology 20, 93–9.CrossRefGoogle ScholarPubMed
Roberts, T. M. (1987). Fine (2–5 nM) filaments: New-types of cytoskeletal structures. Cell Motility and Cytoskeleton 8, 130–42.CrossRefGoogle ScholarPubMed
Roberts, T. M., Pavalko, F. M. & Ward, S. (1986). Membrane and cytoplasmic proteins are transported in the same organelle complex during nematode spermatogenesis. Journal of Cell Biology 102, 1787–96.CrossRefGoogle ScholarPubMed
Shah, J. S., Karam, M., Piessens, W. F. & Wirth, D. F. (1987). Characterization of an Onchocerca-specific DNA clone from Onchocerca volvulus. American Journal of Tropical Medicine and Hygiene 37, 367–84.CrossRefGoogle ScholarPubMed
Shah, J. S., Lamontagne, L., Unasch, T. R., Wirth, D. F. & Piessens, W. F. (1986). Characterization of a ribosomal DNA clone of Brugia malayi. Molecular and Biochemical Parasitology 19, 6775.CrossRefGoogle ScholarPubMed
Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98, 503–17.CrossRefGoogle ScholarPubMed
Ward, S. & Klass, M. (1982). The location of the major protein in Caenorhabditis elegans sperm and spermatocytes. Developmental Biology 92, 203–8.CrossRefGoogle ScholarPubMed
Ward, S., Burke, D. J., Sulston, J. E., Coulson, A. R., Albertson, D. G., Ammons, D., Klass, M. & Hogan, E. (1988). Genomic organization of the major sperm protein genes and pseudogenes in the nematode Caenorhabditis elegans. Journal of Molecular Biology 199, 113.CrossRefGoogle ScholarPubMed