Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-08T11:27:12.689Z Has data issue: false hasContentIssue false

A morphological and histochemical study of the cystogenic cells of the cercaria of Fasciola hepatica L.

Published online by Cambridge University Press:  06 April 2009

K. E. Dixon
Affiliation:
Department of Zoology, The Australian National University, Canberra, A.C.T.

Extract

The cercaria of Fasciola hepatica has four types of cystogenic cells which can be characterized by their position and by their histochemical properties. On the basis of their histochemical reactions, each type of cell was related to a specific layer in the cyst wall of the metacercaria.

The tanned protein cells occupy almost all of the ventral half of the body and contain large granules consisting of basic protein and phenols. Although the presence of a phenolase could not be demonstrated, it is considered that the granules are composed of tanned protein. Before the cercaria leaves the redia, the granules are secreted to the exterior to form a layer contained by a thin, bounding membrane. The tanned protein cells form layer I of the cyst wall.

The mucopolysaccharide cells are concentrated at the dorsal and dorso–lateral surface except for a few around the ventral sucker. They contain acid and neutral mucopolysaccharides and contribute to layers II and IIIb and c. Some of the granules are secreted to the exterior before the cercaria leaves the redia, in a similar manner to the tanned protein granules.

The mucoprotein cells are few in number and lie centrally between the ventral sucker and the pharynx. They give reactions for proteins and carbohydrate-protein complexes and probably help to form layers II and IIIa of the cyst wall.

The keratin cells fill almost the entire dorsal half of the body and contain numerous rod-like granules. These rods are composed of a protein containing sulphydryl groups and disulphide bonds and give rise to layer IV. After secretion of the tanned protein granules to the exterior, some of the keratin cells move to the ventral part of the body formerly occupied by the tanned protein cells.

The outer cyst wall exists in a preformed state in the free swimming cercaria.

I am grateful to Professor J. D. Smyth and Dr J. A. Clegg of this department for advice and encouragement during this investigation and in the preparation of the manuscript. The work was done during the tenure of a Commonwealth Post-Graduate Scholarship.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1966

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barlow, C. H. (1925). The life cycle of the human intestinal fluke Fasciolopsis buski (Lankester). Am. J. Hyg. Monogr. (Ser. 4), 98 pp.Google Scholar
Barrnett, R. J. & Seligman, A. M. (1954). Histochemical demonstration of sulfydryl and disulphide groups of protein. J. natn. Cancer Inst. 14, 769803.Google Scholar
Bennett, H. S. (1951). The demonstration of thiol groups in certain tissues by means of a new coloured sulphydryl reagent. Anat. Rec. 110, 231–47.CrossRefGoogle Scholar
Bonhag, P. F. (1955). Histochemical studies of the ovarian nurse tissues and oocytes of the milkweed bug, Oncopeltus fasciatus (Dallas). I. Cytology, nucleic acids, and carbohydrates. J. Morph. 96, 381440.CrossRefGoogle Scholar
Bovien, P. (1934). Notes on the cercaria of the liver fluke (Cercaria fasciolae hepaticae). Vidensk. Meddr. dansk naturh. Foren. 92, 223–6.Google Scholar
Campbell, W. C. (1960). Presence of phenolase in the fasciolid metacercarial cyst. J. Parasit. 46, 848.CrossRefGoogle Scholar
Cardell, R. R. (1962). Observations on the ultrastructure of the body of the cercaria of Himasthla quissetensis (Miller & Northrup, 1926). Trans. Am. microsc. Soc. 81, 124–31.CrossRefGoogle Scholar
Carleton, H. M. & Drury, R. A. B. (1957). Histological Technique, 343 pp., 3rd ed. London: Oxford University Press.Google Scholar
Clegg, J. A. & Smyth, J. D. (1965). Chemistry of growth and development and culture methods; parasitic Platyhelminthes. In Chemical Zoology. Ed. Scheer, B. T. and Florkin, M.. New York: Academic Press.Google Scholar
Dixon, K. E. (1965). The structure and histochemistry of the cyst wall of the metacercaria of Fasciola hepatica L. Parasitology, 55, 215–26.CrossRefGoogle ScholarPubMed
Dixon, K. E. & Mercer, E. H. (1964). The fine structure of the cyst wall of the metacercaria of Fasciola hepatica. Q. Jl microsc. Sci. 105, 385–9.Google Scholar
Durie, P. H. (1953). The paramphistomes (Trematoda) of Australian ruminants. II. The life history of Ceylonocotyle streptocoelium (Fischoeder) Näsmark and of Paramphistomum ichikawai Fukui. Aust. J. Zool. 1, 193222.CrossRefGoogle Scholar
Gurr, E. (1958). Methods of Analytical Histology and Histochemistry, 327 pp. London: Leonard Hill (Books) Ltd.Google Scholar
Humason, G. (1962). Animal Tissue Techniques, 468 pp. San Francisco: Freeman.CrossRefGoogle Scholar
Hyman, L. H. (1951). The Invertebrates, Platyhelminthes and Rhynchocoela. The Acoelomate Bilateria, 2. 550 pp. London: McGraw-Hill.Google Scholar
Ito, J. & Watanabe, K. (1958). On the cercaria of Centrocestus armatus (Tanabe, 1922), Yamaguti, 1933, especially on its mucoid gland (Heterophyidae, Trematoda). Jap. J. med. Sci. Biol. 11, 21–9.CrossRefGoogle ScholarPubMed
Ito, J. & Watanabe, K. (1959). Studies on mucoid glands in the cercaria of Notocotylus magniovatus Yamaguti, 1934 (Notocotylidae, Trematoda). Jap. J. med. Sci. Biol. 12, 139–43.CrossRefGoogle ScholarPubMed
Johri, L. N. & Smyth, J. D. (1956). A histochemical approach to the study of helminth morphology. Parasitology, 46, 107–17.CrossRefGoogle Scholar
Kruidenier, F. J. (1951). The formation and function of mucoids in virgulate cercariae, including a study of the virgula organ. Am. Midl. Nat. 46, 660–83.CrossRefGoogle Scholar
Kruidenier, F. J. (1953 a). Studies on the formation and function of mucoid glands in cercariae: opisthorchoid cercariae. J. Parasit. 39, 385–91.CrossRefGoogle ScholarPubMed
Kruidenier, F. J. (1953 b). Studies on the formation and function of mucoids in cercariae: non virgulate xiphidiocercariae. Am. Midl. Nat. 50, 382–96.CrossRefGoogle Scholar
Kruidenier, F. J. & Mehra, K. N. (1957). Mucosubstances in plagiorchoid and monostomate cercariae (Trematoda: Digenea). Trans. Ill. St. Acad. Sci. 50, 267–78.Google Scholar
Krull, W. H. & Price, H. F. (1932). Studies on the life history of Diplodiscus temperatus (Stafford) from the frog. Occ. Pap. Mus. Zool. Univ. Mich. no. 237, 39 pp.Google Scholar
Lengy, G. (1960). Study on Paramphistomum microbothrium Fischoeder, 1901 a rumen parasite of cattle in Israel. Bull. Res. Coun. Israel (Sect. B), 9, 71130.Google Scholar
Martin, W. E. (1956). The life cycle of Catatropis johnstoni n.sp. (Trematoda: Notocotylidae). Trans. Am. microsc. Soc. 75, 117–28.CrossRefGoogle Scholar
McManus, J. F. A. (1946). Histological demonstration of mucin after periodic acid. Nature, Lond., 158, 202.CrossRefGoogle ScholarPubMed
Mowry, R. W. (1963). The special value of methods that color both acidic and vicinal hydroxyl groups in the histochemical study of mucins. With revised directions for the colloidal iron stain, the use of Alcian blue G8X and their combinations with the periodic acid–Schiff reaction. Ann. N.Y. Acad. Sci. 106, 402–23.CrossRefGoogle Scholar
Ortigoza, R. O. & Hall, J. E. (1963). Studies on the glandular apparatus and secretion of virgulate xiphidiocercariae 1. Intravital and histochemical data. Expl Parasit. 14, 160–77.CrossRefGoogle Scholar
Pedersen, K. J. (1963). Slime-secreting cells of Planarians. Ann. N.Y. Acad. Sci. 106, 424–42.CrossRefGoogle ScholarPubMed
Rees, F. G. (1932). An investigation into the occurrence, structure, and life-histories of the trematode parasites of four species of Lymnaea (L. truncatula (Müll.), L. pereger (Müll.), L. palustris (Müll.), and L. stagnalis (Linné)), and Hydrobia jenkinsi (Smith) in Glamorgan and Monmouth. Proc. zool. Soc. Lond. pp. 132.Google Scholar
Rees, G. (1937). The anatomy and encystment of Cercaria purpurae Lebour, 1911. Proc. zool. Soc. Lond. 107, 6573.CrossRefGoogle Scholar
Rothschild, M. (1936). The process of encystment of a cercaria parasitic in Lymnaea tenera euphratica. Parasitology, 28, 5662.CrossRefGoogle Scholar
Singh, K. S. & Lewert, R. M. (1959). Observations on the formation and chemical nature of metacercarial cysts of Notocotylus urbanensis. J. infect. Dis. 104, 138–41.CrossRefGoogle Scholar
Skaer, R. J. (1961). Some aspects of the cytology of Polycelis nigra. Q. Jl microsc. Sci. 102, 295317.Google Scholar
Smyth, J. D. (1954). A technique for the histochemical demonstration of polyphenol oxidase and its application to egg-shell formation in helminths and byssus formation in Mytilus. Q. Jl microsc. Sci. 95, 139–52.Google Scholar
Smyth, J. D. & Clegg, J. A. (1959). Egg shell formation in Trematodes and Cestodes. Expl. Parasit. 8, 286323.CrossRefGoogle ScholarPubMed
Sonsino, P. (1884). Les cellules à bâtonnets de certaines cercaire. Archs. ital. Biol. 6, 5761.Google Scholar
Stirewalt, M. A. (1963). Chemical biology of secretions of larval helminths. Ann. N. Y. Acad. Sci. 113, 3653.CrossRefGoogle ScholarPubMed
Swales, W. E. (1935). The life cycle of Fascioloides magna (Bassi, 1875), the large liver fluke of ruminants in Canada, with observations on the bionomics of the larval stages and the intermediate hosts, pathology of fascioloidiasis magna, and control measures. Can. J. Res 12, 177215.CrossRefGoogle Scholar
Thomas, A. P. (1883). The life history of the liver-fluke (Fasciola hepatica) Q. Jl microsc. Sci. 23, 99133.Google Scholar
Wesenberg-Lund, C. J. (1934). Contributions to the development of the Trematoda Digenea. Part II. The biology of the freshwater cercariae in Danish freshwaters. K. danske Vidensk. selsk. skr. Afd. 9,5, 223 pp.Google Scholar
Wright, W. R. (1927). Studies on larval trematodes from North Wales. Part 1. Observations on the redia, cercaria and cyst of Fasciola hepatica. Ann. trop. Med. Parasit. 21, 4756.CrossRefGoogle Scholar