Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T19:36:25.821Z Has data issue: false hasContentIssue false

Morphometric study of eosinophils, mast cells, macrophages and fibrosis in the colon of chronic chagasic patients with and without megacolon

Published online by Cambridge University Press:  09 February 2007

A. B. M. da SILVEIRA*
Affiliation:
Department of Morphology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
S. J. ADAD
Affiliation:
Department of Pathology, Medical School of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
R. CORREA-OLIVEIRA
Affiliation:
Research Center René Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
J. B. FURNESS
Affiliation:
Department of Anatomy and Cell Biology and Centre for Neuroscience, University of Melbourne, Victoria, Australia
D. D'AVILA REIS
Affiliation:
Department of Morphology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
*
*Corresponding author: Department of Morphology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, Brazil, CEP: 31270-901. Fax: +55 31 3499 2771. E-mail: alec@icb.ufmg.br

Summary

The mechanisms involved in the pathogenesis of chagasic megacolon are not completely characterized. Although autoimmunity may play a role in the pathogenesis of Chagas' disease, recent studies suggest a positive association of tissue parasitism, inflammation, and severity of lesions. The aim of this study was to evaluate the role of inflammatory cells and the occurrence of fibrosis in the colon of chagasic patients with and without megacolon. Samples from 26 patients were randomly selected and paraffin-embedded tissue blocks were sectioned and evaluated by histology and immunohistochemistry to analyse the occurrence and relation among eosinophils, mast cells, macrophages and fibrosis. Section analyses showed that the presence of eosinophils and mast cells in the analysed inflammatory cells has a direct correlation with fibrosis density in the chagasic megacolon. These data suggest that the megacolon's pathogenesis is based on a continuous process of cell damage. Our data propose that eosinophils, mast cells and macrophages may have a direct connection with the occurrence of fibrosis in the colon of chagasic patients. We believe that potential therapeutic agents against these cells could avoid the fibrosis process and contribute to prevent the development of chagasic megacolon.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adad, S. J., Cancado, C. G., Etchebehere, R. M., Teixeira, V. P., Gomes, U. A., Chapadeiro, E. and Lopes, E. R. (2001). Neuron count reevaluation in the myenteric plexus of chagasic megacolon after morphometric neuron analysis. Virchows Archiv 438, 254258.CrossRefGoogle ScholarPubMed
Almeida, H. O., Pereira, F. E. and Tafuri, W. L. (1975). [Mast cells in Chagas' chronic cardiopathy]. Revista do Instituto de Medicina Tropical de São Paulo 17, 59.Google ScholarPubMed
Bachem, M. G., Zhou, Z., Zhou, S. and Siech, M. (2006). Role of stellate cells in pancreatic fibrogenesis associated with acute and chronic pancreatitis. Journal of Gastroenterology and Hepatology 21 (Suppl. 3), S92S96.CrossRefGoogle ScholarPubMed
Cabral, H. R., Novak, I. T., Glocker, T. M. and Castro-Viera, G. A. (2002). [Chagas cardiopathy: identification and quantification of infiltrating cells in the hearts of cardiac death patients of different ages]. Revista de la Facultad de Ciencias Médicas de la Universidad Nacional de Córdoba 59, 8389.Google ScholarPubMed
Cardoso, G. M., Morato, M. J., Gomes, J. A., Rocha, M. O., Bonfim, I. P., Williams-Blangero, S., VandeBerg, J. L., Reis, M. R., Magalhaes, E. F. and Correa-Oliveira, R. (2006). Comparative analysis of cell phenotypes in different severe clinical forms of Chagas' disease. Frontiers in Bioscience 11, 11581163.CrossRefGoogle ScholarPubMed
Corbett, C. E., Ribeiro, U. Jr., Prianti, M. G., Habr-Gama, A., Okumura, M. and Gama-Rodrigues, J. (2001). Cell-mediated immune response in megacolon from patients with chronic Chagas' disease. Diseases of the Colon and Rectum 44, 993998.CrossRefGoogle ScholarPubMed
da Silveira, A. B., Arantes, R. M., Vago, A. R., Lemos, E. M., Adad, S. J., Correa-Oliveira, R. and D'Avila Reis, D. (2005). Comparative study of the presence of Trypanosoma cruzi kDNA, inflammation and denervation in chagasic patients with and without megaesophagus. Parasitology 131, 627634.CrossRefGoogle ScholarPubMed
Daryani, A., Hosseini, A. Z. and Dalimi, A. (2003). Immune responses against excreted/secreted antigens of Toxoplasma gondii tachyzoites in the murine model. Veterinary Parasitology 113, 123134.CrossRefGoogle ScholarPubMed
Dias, J. C., Silveira, A. C. and Schofield, C. J. (2002). The impact of Chagas disease control in Latin America: a review. Memórias do Instituto Oswaldo Cruz 97, 603612.CrossRefGoogle ScholarPubMed
DosReis, G. A., Freire-de-Lima, C. G., Nunes, M. P. and Lopes, M. F. (2005). The importance of aberrant T-cell responses in Chagas disease. Trends in Parasitology 21, 237243.CrossRefGoogle ScholarPubMed
Geboes, K. (1994). From inflammation to lesion. Acta Gastro-Enterologica Belgica 57, 273284.Google ScholarPubMed
Hashimoto, M., Nitta, A., Fukumitsu, H., Nomoto, H., Shen, L. and Furukawa, S. (2005). Involvement of glial cell line-derived neurotrophic factor in activation processes of rodent macrophages. Journal of Neuroscience Research 79, 476487.CrossRefGoogle ScholarPubMed
Hirschberg, D. L., Yoles, E., Belkin, M. and Schwartz, M. (1994). Inflammation after axonal injury has conflicting consequences for recovery of function: rescue of spared axons is impaired but regeneration is supported. Journal of Neuroimmunology 50, 916.CrossRefGoogle ScholarPubMed
Kariyawasam, H. H. and Robinson, D. S. (2006). The eosinophil: the cell and its weapons, the cytokines, its locations. Seminars in Respiratory and Critical Care Medicine 27, 117127.CrossRefGoogle ScholarPubMed
Kiefer, R., Kieseier, B. C., Stoll, G. and Hartung, H. P. (2001). The role of macrophages in immune-mediated damage to the peripheral nervous system. Progress in Neurobiology 64, 109127.CrossRefGoogle ScholarPubMed
Kobayashi, T., Ohta, Y., Inui, K., Yoshino, J. and Nakazawa, S. (2002). Protective effect of omeprazole against acute gastric mucosal lesions induced by compound 48/80, a mast cell degranulator, in rats. Pharmacological Research 46, 7584.CrossRefGoogle ScholarPubMed
Koberle, F. (1968). Chagas' disease and Chagas' syndromes: the pathology of American trypanosomiasis. Advances in Parasitology 6, 63116.CrossRefGoogle ScholarPubMed
Laguens, R. P., Cabeza Meckert, P. M. and Vigliano, C. A. (1999). [Pathogenesis of human chronic chagasic myocarditis]. Medicina 59 (Suppl. 2), 6368.Google ScholarPubMed
Lakatos, A. and Franklin, R. J. (2002). Transplant mediated repair of the central nervous system: an imminent solution? Current Opinion in Neurology 15, 701705.CrossRefGoogle ScholarPubMed
Lemos, E. M., Reis, D., Adad, S. J., Silva, G. C., Crema, E. and Correa-Oliveira, R. (1998). Decreased CD4(+) circulating T lymphocytes in patients with gastrointestinal chagas disease. Clinical Immunology and Immunopathology 88, 150155.CrossRefGoogle ScholarPubMed
Levy, A. M., Yamazaki, K., Van Keulen, V. P., Burgart, L. J., Sandborn, W. J., Phillips, S. F., Kephart, G. M., Gleich, G. J. and Leiferman, K. M. (2001). Increased eosinophil infiltration and degranulation in colonic tissue from patients with collagenous colitis. The American Journal of Gastroenterology 96, 15221528.CrossRefGoogle ScholarPubMed
Melo, R. C. and Machado, C. R. (2001). Trypanosoma cruzi: peripheral blood monocytes and heart macrophages in the resistance to acute experimental infection in rats. Experimental Parasitology 97, 1523.CrossRefGoogle ScholarPubMed
Mendell, L. M., Albers, K. M. and Davis, B. M. (1999). Neurotrophins, nociceptors, and pain. Microscopy Research and Technique 45, 252261.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Micera, A., Puxeddu, I., Aloe, L. and Levi-Schaffer, F. (2003). New insights on the involvement of Nerve Growth Factor in allergic inflammation and fibrosis. Cytokine and Growth Factor Reviews 14, 369374.CrossRefGoogle ScholarPubMed
Milei, J., Storino, R. A., Beigelman, R., Fernandez Alonso, G., Matturri, L. and Rossi, L. (1991). Histopathology of specialized and ordinary myocardium and nerves in chronic Chagas disease, with a morphometric study of inflammation and fibrosis. Cardiologia 36, 107115.Google ScholarPubMed
Motomura, Y., Khan, W. I., El-Sharkawy, R. T., Verma-Gandhu, M., Verdu, E. F., Gauldie, J. and Collins, S. M. (2006). Induction of a fibrogenic response in mouse colon by overexpression of monocyte chemoattractant protein 1. Gut 55, 662670.CrossRefGoogle ScholarPubMed
Noga, O., Englmann, C., Hanf, G., Grutzkau, A., Seybold, J. and Kunkel, G. (2003). The production, storage and release of the neurotrophins nerve growth factor, brain-derived neurotrophic factor and neurotrophin-3 by human peripheral eosinophils in allergics and non-allergics. Clinical and Experimental Allergy 33, 649654.CrossRefGoogle ScholarPubMed
Noga, O., Hanf, G., Gorges, D., Thai Dinh, Q., Groneberg, D. A., Suttorp, N. and Kunkel, G. (2005). Regulation of NGF and BDNF by dexamethasone and theophylline in human peripheral eosinophils in allergics and non-allergics. Regulatory Peptides 132, 7479.CrossRefGoogle ScholarPubMed
Nowicki, M. J., Chinchilla, C., Corado, L., Matsuoka, L., Selby, R., Steurer, F., Mone, T., Mendez, R. and Aswad, S. (2006). Prevalence of antibodies to Trypanosoma cruzi among solid organ donors in Southern California: a population at risk. Transplantation 81, 477479.CrossRefGoogle ScholarPubMed
Pinheiro, M. C., Beraldo, P. S., Junqueira Junior, L. F., Lopes, E. R. and Chapadeiro, E. (1992). [A quantitative analysis of the mastocytes and eosinophilic granulocytes in the myocardium of Wistar rats chronically infected by Trypanosoma cruzi. A contribution to the knowledge of myocardial fibrosis]. Revista da Sociedade Brasileira de Medicina Tropical 25, 4550.CrossRefGoogle Scholar
Pinheiro, S. W., Rua, A. M., Etchebehere, R. M., Cancado, C. G., Chica, J. E., Lopes, E. R. and Adad, S. J. (2003). Morphometric study of the fibrosis and mast cell count in the circular colon musculature of chronic Chagas patients with and without megacolon. Revista da Sociedade Brasileira de Medicina Tropical 36, 461466.CrossRefGoogle ScholarPubMed
Sarkar, C., Lakhtakia, R., Gill, S. S., Sharma, M. C., Mahapatra, A. K. and Mehta, V. S. (2002). Chronic subdural haematoma and the enigmatic eosinophil. Acta Neurochirurgica 144, 983988; discussion 988.CrossRefGoogle ScholarPubMed
Slawinska, U., Majczynski, H. and Djavadian, R. (2000). Recovery of hindlimb motor functions after spinal cord transection is enhanced by grafts of the embryonic raphe nuclei. Experimental Brain Research 132, 2738.CrossRefGoogle ScholarPubMed
Smythies, L. E., Sellers, M., Clements, R. H., Mosteller-Barnum, M., Meng, G., Benjamin, W. H., Orenstein, J. M. and Smith, P. D. (2005). Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. The Journal of Clinical Investigation 115, 6675.CrossRefGoogle ScholarPubMed
Stepanyants, A. and Chklovskii, D. B. (2005). Neurogeometry and potential synaptic connectivity. Trends in Neuroscience 28, 387394.CrossRefGoogle ScholarPubMed
Straumann, A. and Simon, H. U. (2004). The physiological and pathophysiological roles of eosinophils in the gastrointestinal tract. Allergy 59, 1525.CrossRefGoogle ScholarPubMed
Tafuri, W. L., Maria, T. A. and Lopes, E. R. (1971). [Myenteric plexus lesions in the esophagus, jejunum and colon of chronic chagasic patients. Electron microscopy study]. Revista do Instituto de Medicina Tropical de São Paulo 13, 7691.Google ScholarPubMed
Vergara, P., Saavedra, Y. and Juanola, C. (2002). Neuroendocrine control of intestinal mucosal mast cells under physiological conditions. Neurogastroenterology and Motility 14, 3542.CrossRefGoogle ScholarPubMed
Xu, X., Rivkind, A., Pikarsky, A., Pappo, O., Bischoff, S. C. and Levi-Schaffer, F. (2004). Mast cells and eosinophils have a potential profibrogenic role in Crohn disease. Scandinavian Journal of Gastroenterology 39, 440447.CrossRefGoogle ScholarPubMed