Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-18T14:32:57.419Z Has data issue: false hasContentIssue false

Nematode parasites of sheep: extension of a simple model to include host variability

Published online by Cambridge University Press:  18 November 2004

K. LOUIE
Affiliation:
AgResearch, Ruakura Research Centre, Private Bag 3123, Hamilton, New Zealand
A. VLASSOFF
Affiliation:
AgResearch, Wallaceville Animal Research Centre, P.O. Box 40-063, Upper Hutt, New Zealand
A. MACKAY
Affiliation:
AgResearch, Grasslands Research Centre, Private Bag 11008, Palmerston North, New Zealand

Abstract

We use results from a simulation-based model of nematode infection of sheep to refine the parameters in a simpler generic model of host–parasite population dynamics. These parameters describe the following host–parasite traits: probability of establishment of ingested larvae, mortality rate of adult parasites, and fecundity of adult female parasites. This simple model is then extended by allowing those parameters to vary amongst individual hosts. A sensitivity analysis is performed to determine which parameters have most influence on host parasite burden. The establishment parameter has the greatest effect on the peak value of parasite burden whilst the other two parameters have more effect on the duration of the burden. A comparison is made with results from the flock model after discussion of the definition of an average host. By allowing these parameters to vary simultaneously within the individual hosts we are able to reproduce the over-dispersed distribution of adult parasites frequently seen in nematode infections of sheep flocks.

Type
Research Article
Copyright
2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

BARGER, I. A. ( 1985). The statistical distribution of Trichostrongylid nematodes in grazing lambs. International Journal for Parasitology 15, 645649.CrossRefGoogle Scholar
BARNES, E. H. & DOBSON, R. J. ( 1990 a). Population dynamics of Trichostrongylus colubriformis in sheep: mathematical model of worm fecundity. International Journal for Parasitology 20, 375380.Google Scholar
BARNES, E. H. & DOBSON, R. J. ( 1990 b). Population dynamics of Trichostrongylus colubriformis in sheep: computer model to simulate grazing systems and the evolution of anthelmintic resistance. International Journal for Parasitology 20, 823831.Google Scholar
BISSET, S. A., MORRIS, C. A., McEWAN, J. C. & VLASSOFF, A. ( 2001). Breeding sheep in New Zealand that are less reliant on anthelmintics to maintain health and productivity. New Zealand Veterinary Journal 49, 236246.CrossRefGoogle Scholar
CALLINAN, A. P. L., MORLEY, F. H. W., ARUNDEL, J. H. & WHITE, D. H. ( 1982). A model of the life cycle of sheep nematodes and the epidemiology of nematodiasis in sheep. Agricultural Systems 9, 199225.CrossRefGoogle Scholar
CORNELL, S. J., ISHAM, V. S. & GRENFELL, B. T. ( 2004). Stochastic and spatial dynamics of nematode parasites in farmed ruminants. Proceedings of the Royal Society of London, Series B 271, 12431250.CrossRefGoogle Scholar
GRENFELL, B. T. ( 1988). Gastrointestinal nematode parasites and the stability and productivity of intensive ruminant grazing systems. Philosophical Transactions of the Royal Society of London, B 229, 4767.CrossRefGoogle Scholar
GRENFELL, B. T., WILSON, K., ISHAM, V. S., BOYD, H. E. G. & DIETZ, K. ( 1995). Modelling patterns of parasite aggregation in natural populations: trichostrongylid nematode–ruminant interactions as a case study. Parasitology 111, S135S151.CrossRefGoogle Scholar
HARRISON, G. B. L., PULFORD, H. D., GATEHOUSE, T. K., SHAW, R. J., PFEFFER, A. & SHOEMAKER, C. B. ( 1999). Studies on the role of mucus and mucosal hypersensitivity reactions during rejection of Trichostrongylus colubriformis from the intestine of immune sheep using an experimental challenge model. International Journal for Parasitology 29, 459468.CrossRefGoogle Scholar
HONG, H. A., MICHEL, J. F. & LANCASTER, M. B. ( 1986). Populations of Ostertagia circumcincta in lambs following a single infection. International Journal for Parasitology 16, 6367.CrossRefGoogle Scholar
HONG, H. A., MICHEL, J. F. & LANCASTER, M. B. ( 1987). Observations on the dynamics of worm burdens in lambs infected daily with Ostertagia circumcincta. International Journal for Parasitology 17, 951957.CrossRefGoogle Scholar
KAO, R. R., LEATHWICK, D. M., ROBERTS, M. G. & SUTHERLAND, I. G. ( 2000). Nematode parasites of sheep: a survey of epidemiological parameters and their application in a simple model. Parasitology 121, 85103.CrossRefGoogle Scholar
LEATHWICK, D. M., BARLOW, N. D. & VLASSOFF, A. ( 1992). A model for nematodiasis in New Zealand lambs. International Journal for Parasitology 22, 789799.CrossRefGoogle Scholar
LEATHWICK, D. M., VLASSOFF, A. & BARLOW, N. D. ( 1995). A model for nematodiasis in New Zealand lambs: the effect of drenching regime and grazing management on the development of anthelmintic resistance. International Journal for Parasitology 25, 14791490.CrossRefGoogle Scholar
LEATHWICK, D. M., MILLER, C. M., BROWN, A. E. & SUTHERLAND, I. A. ( 1999). The death rate of Ostertagia circumcincta and Trichostrongylus colubriformis in lactating ewes: implications for anthelmintic resistance. International Journal for Parasitology 27, 411416.Google Scholar
LEATHWICK, D. M., POMROY, W. E. & HEATH, A. C. G. ( 2001). Anthelmintic resistance in New Zealand. New Zealand Veterinary Journal 49, 227235.CrossRefGoogle Scholar
NIEZEN, J. H., WAGHORN, G. C. & CHARLESTON, W. A. G. ( 1998). Establishment and fecundity of Ostertagia circumcincta and Trichostrongylus colubriformis in lambs fed lotus (Lotus pedunculatus) or perennial ryegrass (Lolium perenne). Veterinary Parasitology 78, 1321.CrossRefGoogle Scholar
PATON, G., THOMAS, R. J. & WALLER, P. J. ( 1984). A prediction model for parasitic gastro-enteritis in lambs. International Journal for Parasitology 14, 439445.CrossRefGoogle Scholar
ROBERTS, M. G. & GRENFELL, B. T. ( 1991). The population dynamics of nematode infections of ruminants: periodic perturbations as a model for management. IMA Journal of Mathematics Applied in Medicine and Biology 8, 8393.CrossRefGoogle Scholar
ROBERTS, M. G. & GRENFELL, B. T. ( 1992). The population dynamics of nematode infections of ruminants: the effect of seasonality in the free-living stages. IMA Journal of Mathematics Applied in Medicine and Biology 9, 2941.CrossRefGoogle Scholar
ROBERTS, M. G. & HEESTERBEEK, J. A. ( 1995). The dynamics of nematode infections of farmed ruminants. Parasitology 110, 493502.CrossRefGoogle Scholar
SMITH, G. & GALLIGAN, D. T. ( 1988). Mathematical models of the population biology of Ostertagia ostertagi and Teladorsagia circumcincta, and the economic evaluation of disease control strategies. Veterinary Parasitology 27, 7383.CrossRefGoogle Scholar
SMITH, G. & GRENFELL, B. T. ( 1994). Modelling of parasite populations: gastrointestinal nematode models. Veterinary Parasitology 54, 127143.CrossRefGoogle Scholar
SMITH, G., GRENFELL, B. T., ISHAM, V. & CORNELL, S. ( 1999). Anthelmintic resistance revisited: underdosing chemoprophylactic strategies and mating probabilities. International Journal for Parasitology 29, 7791.CrossRefGoogle Scholar
SRÉTER, T., MOLNÁR, V. & KASSAI, T. ( 1994). The distribution of nematode egg counts and larval counts in grazing sheep and their implications for parasite control. International Journal for Parasitology 24, 103108.CrossRefGoogle Scholar
SUTHERLAND, I. A., LEATHWICK, D. M., BROWN, A. E. & MILLER, C. M. ( 1997). Prophylactic efficacy of persistent anthelmintics against challenge with drug-resistant and susceptible Ostertagia circumcincta. The Veterinary Record 141, 120123.CrossRefGoogle Scholar
VLASSOFF, A. ( 1976). Seasonal incidence of infective trichostrongyle larvae on pasture: the contribution of the ewe and the role of the residual pasture infestation as sources of infection to the lamb. New Zealand Journal of Experimental Agriculture 4, 281284.CrossRefGoogle Scholar