Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-19T13:29:44.283Z Has data issue: false hasContentIssue false

Origin, kinetics of circulation and fate in vivo of the major excretory–secretory product of Acanthocheilonema viteae

Published online by Cambridge University Press:  06 April 2009

W. Harnett
Affiliation:
National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA
M. J. Worms
Affiliation:
National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA
A. Kapil
Affiliation:
National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA
M. Grainger
Affiliation:
National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA
R. M. E. Parkhouse
Affiliation:
Divisions of Parasitology and Immunology, The Ridgeway, Mill Hill, London NW7 1AA

Summary

The excretions-secretions (E-S) of Acanthocheilonema viteae consist mainly of one product, molecular weight 62 kDa. This molecule is synthesized during the vertebrate phase of the parasite life-cycle and is first detectable in the E-S of L4 parasites. It is cross-reactive with E-S of human filarial parasites as a consequence of possessing a phosphorylcholine (PC) moiety. The 62 kDa molecule has been employed as a model for the study of the origin and fate of filarial E-S. Immunohistological analysis has shown the molecule to be located predominantly in the parasite gut. Transplantation of adult female [S] methionine pulsed worms into uninfected jirds resulted in the radio-labelled secreted 62 kDa antigen being detected in the bloodstream within 4 h by SDS–PAGE/immunoprecipitation analysis. The systemic half-life of the molecule as estimated by clearance of injected, purified I-labelled material was measured in naive and infected jird hosts.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Carlier, Y., Bout, D. & Capron, A. (1978). Further studies on the circulating M antigen in human and experimental Schistosoma mansoni infections. Annals of Immunology 126C, 811–18.Google Scholar
Carlier, Y., Bout, D., Strecker, G., Debray, H. & Capron, A. (1980). Purification, immunochemical and biologic characterization of the schistosoma circulating M antigen. Journal of Immunology 124, 2442–50.CrossRefGoogle ScholarPubMed
Chamberlain, J. P. (1979). Fluorographic detection of radioactivity in polyacrylamide gels, with the water soluble fluor, sodium salicylate. Analytical Biochemistry 98, 132–5.CrossRefGoogle ScholarPubMed
Chandrashekar, R., Rao, U. R., Rajasekariah, G. R. & Subrahmanyam, O. (1984). Separation of viable microfilariae free of blood cells on Percoll gradients. Journal of Helminthology 58, 6970.CrossRefGoogle ScholarPubMed
Chesebro, B. & Metzger, H. (1972). Affinity labelling of a phosphorylcholine binding myeloma protein. Biochemistry 11, 766–71.CrossRefGoogle Scholar
Dissanayake, S., Forsyth, K. P., Ismail, M. M. & Mitchell, G. F. (1984). Detection of circulating antigen in Bancroftian filariasis by using a monoclonal antibody. American Journal of Tropical Medicine and Hygiene 33, 1130–40.CrossRefGoogle ScholarPubMed
Dubray, G. & Bezard, G. (1982). A highly sensitive periodic acid–silver stain for 1,2 diol groups of glycoproteins and polysaccharides in polyacrylamide gels. Analytical Biochemistry 119, 325–9.CrossRefGoogle Scholar
Ehrenberg, J. P., Tamashiro, W. K. & Scott, A. L. (1987). Dirofilaria immitis: identification and characterization of circulating parasite antigens. Experimental Parasitology 63, 205–14.CrossRefGoogle ScholarPubMed
Forsyth, K. P., Mitchell, G. F. & Copeman, D. B. (1984) Onchocerca gibsoni: increase of circulating egg antigen with chemotherapy in bovines. Experimental Parasitology 58, 4155.CrossRefGoogle ScholarPubMed
Forsyth, K. P., Spark, R., Kazura, J., Brown, G. V., Peters, P., Heywood, P., Dissanayake, S. & Mitchell, G. F. (1985). A monoclonal antibody-based immunoradiometric assay for detection of circulating antigen in bancroftian filariasis. Journal of Immunology 134, 1172–7.CrossRefGoogle ScholarPubMed
Gualzata, M., Weiss, N. & Heusser, C. H. (1986). Dipetalonema viteae: phosphorylcholine and nonphosphorylcholine antigenic determinants in infective larvae and adult worms. Experimental Parasitology 61, 95102.CrossRefGoogle ScholarPubMed
Hamilton, R. G. & Scott, A. L. (1984). Immunoradiometric assay for quantitation of Dirofilaria immitis antigen in dogs with heartworm infections. American Journal of Veterinary Research 45, 2055–61.Google ScholarPubMed
Haque, A. & Capron, A. (1986). Filariasis antigens and host–parasite interactions. In ‘Parasite Antigens’, ed. Pearson, T. W. pp. 317402. New York and Basel: Marcel Dekker Inc.Google Scholar
Harnett, W., Grainger, M., Worms, M. J. & Parkhouse, R. M. E. (1989). Evaluation of potential of excretions-secretions (E–S) of Litomosoides carinii to substitute for human filarial E–S. Parasitology Research (In the Press.)CrossRefGoogle Scholar
Harnett, W., Meghji, M., Worms, M. J. & Parkhouse, R. M. E. (1986). Quantitative and qualitative changes in production of excretions/secretions by Litomosoides carinii during development in the jird (Meriones unguiculatus). Parasitology 93, 317–31.CrossRefGoogle ScholarPubMed
Kaushal, N. A., Hussain, R., Nash, T. E. & Ottesen, E. A. (1982). Identification and characterisation of excretory-secretory products of Brugia malayi adult filarial parasites. Journal of Immunology 129, 338–43.CrossRefGoogle ScholarPubMed
Kestens, L., Mangelschots, K., Van Marck, E. A. E., Gigase, P. L. & Deelder, A. M. (1988). Schistosoma mansoni: impaired clearance of model immune complexes consisting of circulating anodic antigen and monoclonal IgG1 in infected mice. Parasitology Research 74, 356–62.CrossRefGoogle ScholarPubMed
Laskey, R. A. & Mills, A. D. (1977). Enhanced autoradiographic detection of 32P and 125I using intensifying screens and hypersensitised films. FEBS Letters 82, 314–16.CrossRefGoogle Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265–75.CrossRefGoogle ScholarPubMed
Maizels, R. M., Burke, J. & Denham, D. A. (1987). Phosphorylcholine-bearing antigens in filarial nematode parasites: analysis of somatic extracts and in vitro secretions of Brugia malayi and B. pahangi. Parasite Immunology 9, 4966.CrossRefGoogle ScholarPubMed
Maizels, R., Burke, J., Sutanto, I., Purnomo, & Partono, F. (1986). Secreted and surface antigens from the larval stages of Wuchereria bancrofti, the major human lymphatic filarial parasite. Molecular and Biochemical Parasitology 19, 2734.CrossRefGoogle ScholarPubMed
Maizels, R. M. & Selkirk, M. E. (1988). Biology and immunochemistry of nematode antigens. In ‘Biology of Parasitism, MBL Lectures in Biology, (ed. England, P. T. & Sher, F. A.), pp. 285308. New York: Alan R. Liss Inc.Google Scholar
Merril, C. R., Goldman, D., Sedman, S. A. & Ebert, M. H. (1981). Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science 211, 1437–8.CrossRefGoogle ScholarPubMed
Nash, T. E. (1974). Localization of the circulating antigen within the gut of Schistosoma mansoni. American Journal of Tropical Medicine and Hygiene 23, 1085–7.CrossRefGoogle ScholarPubMed
Nash, T. E. (1982). Factors that modulate clearance and ultimate fate of a specific schistosome antigen (GASP) in schistosoma infections. Journal of Immunology 128, 1608–13.CrossRefGoogle Scholar
Nash, T. E. (1984). Immune complex size determines the clearance rate of a circulating antigen in schistosome-infected mice. American Journal of Tropical Medicine and Hygiene 33, 621–6.CrossRefGoogle ScholarPubMed
Nash, T. E., Nasir-Ud-Din, & Jeanloz, R. W. (1977). Further purification and characterization of a circulating antigen in schistosomiasis. Journal of Immunology 119, 1627–33.CrossRefGoogle ScholarPubMed
Ngu, J. L., Ndumbe, P. M., Titanji, V. & Leke, R. (1981). A diagnostic test for Onchocerca volvulus infections. Tropenmedizin und Parasitologie 32, 165–70.Google Scholar
Paranjape, R. S., Hussain, R., Nutman, T. B., Hamilton, R. & Ottesen, E. A. (1986). Identification of circulating parasite antigen in patients with bancroftian filariasis. Clinical and Experimental Immunology 63, 508–16.Google ScholarPubMed
Parkhouse, R. M. E. & Clark, N. W. T. (1983). Stage-specific secreted and somatic antigens of Trichinella spiralis. Molecular and Biochemical Parasitology 9, 319–27.Google ScholarPubMed
Parkhouse, R. M. E., Philipp, M. & Ogilvie, B. M. (1981). Characterization of surface antigens of Trichinella spiralis infective larvae. Parasite Immunology 3, 339–52.CrossRefGoogle ScholarPubMed
Sarles, M. P. (1938). The in vitro action of immune rat serum on the nematode, Nippostrongylus muris. Journal of Infectious Diseases 62, 337–48.CrossRefGoogle Scholar
Weiss, N., Van Den Ende, M. C., Albiez, E. J., Barbiero, V. K., Forsyth, K. & Prince, A. M. (1986). Detection of serum antibodies and circulating antigens in a chimpanzee experimentally infected with Onchocerca volvulus. Transactions of the Royal Society of Tropical Medicine and Hygiene 80, 587–91.CrossRefGoogle Scholar
Wenger, J. D., Forsyth, K. P. & Kuzura, J. W. (1988). Identification of phosphorylcholine epitope-containing antigens in Brugia malayi and relation of serum epitode levels to infection status of jirds with Brugian filariasis. American Journal of Tropical Medicine and Hygiene 38, 133–41.CrossRefGoogle Scholar
Worms, M. J., Terry, R. J. & Terry, A. (1961). Dipetalonema witei: filarial parasite of the jird, Meriones libycus. I. Maintenance in the laboratory. Journal of Parasitology 47, 963–70.CrossRefGoogle Scholar