Hostname: page-component-7bb8b95d7b-nptnm Total loading time: 0 Render date: 2024-09-06T17:16:23.286Z Has data issue: false hasContentIssue false

Structure and development of the spermatozoon of the parasitic nematode, Nematospiroides dubius

Published online by Cambridge University Press:  06 April 2009

E. J. Wright*
Affiliation:
Department of Zoology, University of Adelaide, Adelaide, S.A., Australia
R. I. Sommerville
Affiliation:
Department of Zoology, University of Adelaide, Adelaide, S.A., Australia
*
*E. J. Wright, Department of Zoology, University of Adelaide, Box 498, G.P.O., Adelaide, South Australia 5001.

Extract

Spermatogenesis and sperm maturation in Nematospiroides dubius were studied using electron microscopy. The testis is telegonic and germ cells in the zones of mitosis, growth and meiosis are connected by a central anucleate mass of cytoplasm, the rachis. The early part of spermatogenesis is dominated by the synthesis and growth of membrane-bound vesicles called membranous organelles, which originate from RER-associated Golgi bodies. Following meiosis the spermatids separate from the rachis and their chroinatin, which is no longer bounded by a nuclear envelope, condenses into an arrow-head shape and is extruded to form a tail-like structure. After insemination spermatozoa undergo a profound change called activation. The cytoplasmic region which was previously long and cylindrical becomes spherical and the membranous organelles which lined its perimeter fuse with the plasma membrane and become confined to the posterior hemisphere of the sperm, close to the nuclear tail. The anterior half of the sperm is devoid of organelles but contains many filaments organized into clumps and chains; this region being responsible for amoeboid locomotion of the sperm.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anya, A. O. (1976). Physiological aspects of reproduction in nematodes. Advances in Parasitology 14, 267351.Google Scholar
Balhorn, R. (1982). A model for the structure of chromatin in mammalian sperm. Journal of Cell Biology 93, 298305.CrossRefGoogle Scholar
Bedford, J. M. (1975). On the functional significance of –S–S– crosslinks in the sperm heads with particular reference to eutherian mammals. In The Functional Anatomy of the Spermatozoon (ed. Afzelius, B. A.), pp. 343–47. Oxford: Pergamon Press.CrossRefGoogle Scholar
Begg, D. A. & Rebhun, L. I. (1978). Visualization of actin filament polarity in thin sections. Biophysics Journal 21, 23a.Google Scholar
Bergstrom, B. A. & Arnold, J. M. (1974). Nonkinetochore association of chromatin and microtubules. Journal of Cell Biology 62, 917–20.CrossRefGoogle ScholarPubMed
Clark, W. H. Jr, Moretti, R. L. & Thomson, W. W. (1972). Histochemical and ultracytochemical studies of the spermatids and sperm of Ascaris lumbricoides var. suum. Biology of Reproduction 7, 145–59.Google Scholar
Favard, P. (1961). Evolution des ultrastructures cellulaires au cours de Ia spermatogenése de l' Ascaris. Annales des sciences naturelles, Zoologie 3, 53152.Google Scholar
Foor, W. E. (1968). Zygote formation in Ascaris lumbricoides (Nematoda). Journal of Cell Biology 39, 119–34.Google Scholar
Foor, W. E. (1970). Spermatozoon morphology and zygote formation in nematodes. Biology of Reproduction, Suppl. 2, 177202.Google Scholar
Foor, W. E. & Mcmahon, J. T. (1973). Role of the glandular vas deferens in Ascaris suum (Nematoda). Journal of Parasitology 62, 849–64.CrossRefGoogle Scholar
Goldstein, P. & Triantaphyllou, A. C. (1980). The ultrastructure of sperm development in the plant-parasitic nematode Meloidogyne hapla. Journal of Ultrastructure Research 71, 143–53.CrossRefGoogle ScholarPubMed
Kaulenas, M. S. & Fairbairn, D. (1968). RNA metabolism of fertilized Ascaris lumbricoides eggs during uterine development. Experimental Cell Research 52, 233–51.CrossRefGoogle ScholarPubMed
Martin, J. & Lee, D. L. (1980). Observations on the structure of the male reproductive system and spermatogenesis of Nematodirus battus. Parasitology 81, 579–86.Google Scholar
Nelson, G. A., Roberts, T. M. & Ward, S. (1982). Caenorhabditus elegans spermatozoan locomotion: amoeboid movement with almost no actin. Journal of Cell Biology 92, 121–31.Google Scholar
Phillips, D. M. (1976). Nuclear shaping during spermiogenesis in the whip scorpion. Journal of Ultrastructure Research 54, 397405.Google Scholar
Phillips, D. M. (1980). Observations on mammalian spermiogenesis using surface replicas. Journal of Ultrastructure Research 72, 103–11.Google Scholar
Reynolds, E. S. (1963). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. Journal of Cell Biology 17, 208–12.CrossRefGoogle ScholarPubMed
Shepherd, A. M. (1981). Interpretation of sperm development in nematodes. Nematologica 27, 122–5.CrossRefGoogle Scholar
Sommerville, R. I. & Weinstein, P. P. (1964). Reproductive behaviour of Nematospiroides dubius in vivo and in vitro. Journal of Parasitology 50, 401–9.Google Scholar
Subirana, J. A. (1975). On the biological role of basic proteins in spermatozoa and during spermiogenesis. In The Biology of the Male Gamete (ed. Duckett, J. G. and Racey, P. A.), pp. 239–44. London: Academic Press.Google Scholar
Szöllösi, A. (1974). Effets de basses temperatures d'élevage sur Ia spermiogenése du Criquet. Journal de Microscopie (Paris) 20, 92a.Google Scholar
Szöllösi, A. (1975). Electron microscope study of spermiogenesis in Locwsta migratoria (Insect Orthoplera). Journal of Ultrastructure Research 50, 322–46.Google Scholar
Ugwunna, S. C. & Foor, W. E. (1982). The function of microtubules during spermatogenesis of Ancylostoma caninum. Journal of Parasitology 68, 817–23.Google Scholar
Webster, P. M. & Richards, K. S. (1977). Spermiogenesis in the Enchytraeid Lumbricillus rivalis (Oligochaeta: Annelida). Journal of Ultrastructure Research 61, 6277.CrossRefGoogle ScholarPubMed
Wilkinson, R. F., Stanley, H. P. & Bowan, J. T. (1974). Genetic control of spermiogenesis in Drosophila melanogaster: The effects of abnormal cytoplasmic microtubule populations in mutant MS(3) 1OR and its colcemid-induced phenocopy. Journal of Ultrastructure Research 48, 242–58.Google Scholar
Wolf, N., Hirsh, J. R. & McIntosh, J. R. (1978). Spermatogenesis in males of the free living nematode Caenorhabditus elegans. Journal of Ultrastructure Research 63, 155–69.Google Scholar
Wright, E. J. & Sommerville, R. I. (1977). Movement of a non-flagellate spermatozoon: a study of the male gamete of Nematospiroides dubius (Nematoda). International Journal for Parasitology 7, 353–9.Google Scholar