Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-06T07:15:28.491Z Has data issue: false hasContentIssue false

Surface antigens of Litomosoides carinii microfilariae: agglutinating antibodies react with sheath components of 40 and 120 kiloDalton molecular mass

Published online by Cambridge University Press:  06 April 2009

G. Schares
Affiliation:
Institut für Parasitologie, Justus-Liebig-Universität, Rudolf-Buchheim-Strasse 2, D-35392 Giessen, Germany
B. Schützle
Affiliation:
Institut für Parasitologie, Justus-Liebig-Universität, Rudolf-Buchheim-Strasse 2, D-35392 Giessen, Germany
H. Zahner
Affiliation:
Institut für Parasitologie, Justus-Liebig-Universität, Rudolf-Buchheim-Strasse 2, D-35392 Giessen, Germany
F. J. Conraths
Affiliation:
Institut für Parasitologie, Justus-Liebig-Universität, Rudolf-Buchheim-Strasse 2, D-35392 Giessen, Germany

Summary

This study was conducted to identify surface antigens of the microfilarial sheath of Litomosoides carinii which are accessible to antibodies. Rabbit antisera were raised against the soluble and insoluble fractions of purified sheaths by extracting them with a buffer containing 2-mercaptoethanol and sodium dodecylsulphate. These sera and rabbit hyperimmune sera directed against homogenates of total microfilariae, mature (i.e. microfilariae liberating) female parasites and excretory–secretory products of adult females were able to agglutinate live and formaldehyde-fixed microfilariae. When the antisera directed against sheath constituents were administered to patently infected Mastomys coucha, the microfilaraemia of these animals was rapidly reduced and remained low for a period of 2–3 weeks. Antibodies specifically binding to the microfilarial surface were immunoaffinity-purified on formaldehyde-fixed microfilariae. The antibodies react with sheath antigens of 40 and 120 kDa molecular mass which are produced by the epithelium of the distal uterus of the mature female, secreted and attached to the surface of the sheaths. A 120 kDa antigen recognized by anti-sheath surface antibodies was also detected in the excretory–secretory products of in Vitro-cultured immature female L. carinii from day 30 post-infection onwards. In the excretory–secretory products of mature adult female parasites recovered on day 130 post-infection, this 120 kDa molecule was absent. However, material reacting with the antibody was detected in the stacking gel of SDS-polyacrylamide gels. This finding may indicate that the basic units forming the 120 kDa antigen of immature adults or microfilarial sheath surface antigens occur in a highly polymerized form in the excretory–secretory products of mature female parasites.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bardehle, G., Conraths, F. J., Fahrenholz, F., Hintz, M., Linder, D., Schares, G., Schott, H.-H., Schützle, B., Stirm, S., Stüber, W. & Zahner, H. (1991). A major Litomosoides carinii microfilarial sheath glycoprotein (gp22): amino terminal sequence and immunological studies with corresponding synthetic peptides. Parasitology 103, 387–94.CrossRefGoogle Scholar
Bardehle, G., Hintz, M., Linder, D., Schares, G., Schott, H.-H., Stirm, S. & Zahner, H. (1992). Litomosoides carinii: Extraction of the microfilarial sheath components and antigenicity of the sheath fractions. Parasitology Research 78, 501–8.CrossRefGoogle ScholarPubMed
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248–54.CrossRefGoogle ScholarPubMed
Canlas, M., Wadee, A., Lamontagne, L. & Piessens, W. F. (1984). A monoclonal antibody to surface antigens on microfilariae of Brugia malayi reduces microfilaremia in infected jirds. American Journal of Tropical Medicine and Hygiene 33, 420–4.CrossRefGoogle ScholarPubMed
Chandrashekar, R., Rao, U. R., Rajasekariah, G. R. & Subrahmanyam, D. (1984). Separation of viable microfilariae free of blood cells on Percoll gradients. Journal of Helminthology 58, 6970.Google Scholar
Chandrashekar, R., Rao, U. R. & Subrahmanyam, D. (1990). IgG response of rats to the excretory-secretory products of Litomosoides carinii. Parasitology Research 76, 420–3.CrossRefGoogle Scholar
Christ, H., Hirzmann, J., Conraths, F., Zahner, H., Stirm, S. & Hobom, G. (1992). Trans-splicing of an early embryo mRNA in Litomosoides carinii, coding for the major microfilarial sheath protein gp22. Gene 121, 219–26.CrossRefGoogle ScholarPubMed
Conraths, F. J., Schützle, B., Schares, G., Christ, H., Hobom, G. & Zahner, H. (1993). The gene coding the major sheath protein of Litomosoides carinii microfilariae, gp22, is transcribed in oocytes and embryonic cells. Molecular and Biochemical Parasitology 60, 111–20.CrossRefGoogle ScholarPubMed
Franz, M. & Andrews, P. (1986). Histology of adult Litomosoides carinii (Nematoda, Filaroidea). Zeitschrift fur Parasitenkunde 72, 387–95.CrossRefGoogle Scholar
Fuhrman, J. A., Lane, W. S., Smith, R. F., Piessens, W. F. & Perler, F. B. (1991). Transmission-blocking antibodies recognize microfilarial chitinase in brugian lymphatic filariasis. Proceedings of the National Academy of Sciences, USA 89, 1548–52.CrossRefGoogle Scholar
Goding, J. W. (1978). Use of staphylococcal protein A as an immunological reagent. Journal of Immunological Methods 20, 241–53.CrossRefGoogle ScholarPubMed
Harnett, W., Meghji, M., Worms, M. J. & Parkhouse, R. M. E. (1986). Quantitative and qualitative changes in production of excretions/secretions by Litomosoides carinii during development in the jird (Meriones unguiculatus). Parasitology 93, 317–31.CrossRefGoogle ScholarPubMed
Kurniawan, A., Yazdanbakhsh, M., Van Ree, R., Aalberse, R., Selkirk, M. E., Partono, F. & Maizels, H. M. (1993). Differential expression of IgE and IgG4 specific antibody responses in asymptomatic and chronic human filariasis. Journal of Immunology 150, 3941–50.CrossRefGoogle ScholarPubMed
Lämmler, G., Saupe, E. & Herzog, H. (1968). Infektionsversuche mit der Baumwollrattenfilarie Litomosoides carinii bei Mastomys natalensis (Smith, 1834). Zeitschrift für Parasitenkunde 30, 281–90.CrossRefGoogle ScholarPubMed
Lawson, D., Wenk, P. & Storey, D. M. (1989). Identification of a potential protective microfilarial antigen from Litomosoides carinii (Nematoda, Filaroidea). Tropical Medicine and Parasitology 40, 42–6.Google Scholar
McGreevy, P. B., Ratiwayanto, S., Tuti, S., McGreevy, M. M. & Dennis, D. T. (1980). Brugia malayi: relationship between anti-sheath antibodies and amicrofilaremia in natives living in an endemic area of South Kalimantan, Borneo. American Journal of Tropical Medicine and Hygiene 29, 553–62.CrossRefGoogle Scholar
Ottesen, E. A. (1989). Filariasis now. American Journal of Tropical Medicine and Hygiene 41 (Suppl.), 917.CrossRefGoogle ScholarPubMed
Philipp, M., Worms, M. J., McLaren, D. J., Ogilvie, B. M., Parkhouse, R. M. E. & Taylor, P. M. (1984). Surface proteins of a filarial nematode: a major soluble antigen and a host component on the cuticle of Litomosoides carinii. Parasite Immunology 6, 6382.CrossRefGoogle Scholar
Pinder, M., Dupont, A. & Egwang, T. G. (1988). Identification of a surface antigen on Loa loa microfilariae the recognition of which correlates with the amicrofilaremic state in man. Journal of Immunology 141, 2480–6.CrossRefGoogle ScholarPubMed
Raether, W. & Meyerhöfer, W. (1967). Quantitative Untersuchungsmethoden zum Nachweis von Mikrofilarien (Litomosoides carinii) mit Hilfe von Zählkammern nach Fuchs-Rosenthal und Jessen sowie Anreicherungsverfahren. Zeitschrift für Tropenmedizin und Parasitologie 18, 99108.Google Scholar
Rogers, R., Ellis, D. S. & Denham, D. A. (1976). Studies with Brugia pahangi. 14. Intrauterine development of the microfilariae and a comparison with other filarial species. Journal of Helminthology 50, 251–7.CrossRefGoogle Scholar
Schraermeyer, U., Peters, W. & Zahner, H. (1987). Formation by the uterus of a peripheral layer of the sheath in microfilariae of Litomosoides carinii and Brugia pahangi. Parasitology Research 73, 557–64.CrossRefGoogle Scholar
Selkirk, M. E., Yazdanbakhsh, M., Freedman, D., Blaxter, M. L., Jenkins, R. E. & Williams, S. A. (1991). A proline rich structural protein of the surface sheath of larval Brugia filarial nematode parasites. Journal of Biological Chemistry 266, 11002–8.CrossRefGoogle ScholarPubMed
Storey, D. M. & Mettias, E. F. (1980). Suppression of microfilariae in Litomosoides carinii infections in cotton rats by vaccination with adult worm homogenate. Annals of Tropical Medicine and Parasitology 74, 211–18.CrossRefGoogle ScholarPubMed
Wenk, P. (1986). The function of non-circulating microfilariae (Nematoda: Filaroidea). Deutsche tierärztliche Wochenschrift 93, 414–18.Google Scholar
Wenk, P. & Wegerhof, P. H. (1982). Studies on acquired resistance of the cotton rat against microfilariae of Litomosoides carinii. II. Injection of microfilariae during prepatency. Zeitschrift für Parasitenkunde 68, 321–9.CrossRefGoogle Scholar
Wong, M. M. (1964). Studies on microfilaremia in dogs. II. Levels of microfilaremia in relation to immunological response of the host. Parasitology 13, 6677.Google Scholar
Wong, M. M. & Guest, M. F. (1969). Filarial antibodies and eosinophilia in human subjects in an endemic area. Transactions of the Royal Society of Tropical Medicine and Hygiene 63, 796800.CrossRefGoogle Scholar
Zahner, H. & Wegerhof, P. H. (1985). Immunity to Litomosoides carinii in Mastomys natalensis. I. Effect of immunization with microfilariae and existing primary infections on the parasitaemia after microfilariae injection and challenge infection. Zeitschrift für Parasitenkunde 71, 583–93.CrossRefGoogle ScholarPubMed