Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-23T21:27:13.191Z Has data issue: false hasContentIssue false

Tankyrase inhibitors hinder Trypanosoma cruzi infection by altering host-cell signalling pathways

Published online by Cambridge University Press:  12 August 2021

Laura Lafon-Hughes
Affiliation:
Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay Grupo de Biofisicoquímica, Departamento de Ciencias Biológicas, Centro Universitario Regional Litoral Norte, Universidad de la República (CENUR-UdelaR), Salto, Uruguay
Silvia H. Fernández Villamil*
Affiliation:
Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ‘Dr. Héctor N. Torres’, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
Salomé C. Vilchez Larrea*
Affiliation:
Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ‘Dr. Héctor N. Torres’, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
*
Author for correspondence: Salomé C. Vilchez Larrea, E-mail: vilchez.ingebi@gmail.com; Silvia H. Fernández Villamil, E-mail: silvia.villamil@gmail.com
Author for correspondence: Salomé C. Vilchez Larrea, E-mail: vilchez.ingebi@gmail.com; Silvia H. Fernández Villamil, E-mail: silvia.villamil@gmail.com

Abstract

Chagas disease is a potentially life-threatening protozoan infection affecting around 8 million people, for which only chemotherapies with limited efficacy and severe adverse secondary effects are available. The aetiological agent, Trypanosoma cruzi, displays varied cell invading tactics and triggers different host cell signals, including the Wnt/β-catenin pathway. Poly(ADP-ribose) (PAR) can be synthetized by certain members of the poly(ADP-ribose) polymerase (PARP) family: PARP-1/-2 and Tankyrases-1/2 (TNKS). PAR homoeostasis participates in the host cell response to T. cruzi infection and TNKS are involved in Wnt signalling, among other pathways. Therefore, we hypothesized that TNKS inhibitors (TNKSi) could hamper T. cruzi infection. We showed that five TNKSi (FLALL9, MN64, XAV939, G007LK and OULL9) diminished T. cruzi infection of Vero cells. As most TNKSi did not affect the viability of axenically cultivated parasites, our results suggested that TNKSi were interfering with parasite–host cell signalling. Infection by T. cruzi induced nuclear translocation of β-catenin, as well as upregulation of TNF-α expression and secretion. These changes were hampered by TNKSi. Further signals should be monitored in this model and in vivo. As a TNKSi has entered cancer clinical trials with promising results, our findings encourage further studies aiming at drug repurposing strategies.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arun, A, Rayford, KJ, Cooley, A, Rachakonda, G, Villalta, F, Pratap, S, Lima, MF, Sheibani, N and Nde, PN (2020) Thrombospondin-1 plays an essential role in yes-associated protein nuclear translocation during the early phase of Trypanosoma cruzi infection in heart endothelial cells. International Journal of Molecular Sciences 21, 115.CrossRefGoogle ScholarPubMed
Beaulieu, C, Isabel, E, Fortier, A, Massé, F, Mellon, C, Méthot, N, Ndao, M, Nicoll-Griffith, D, Lee, D, Park, H and Black, WC (2010) Identification of potent and reversible cruzipain inhibitors for the treatment of Chagas disease. Bioorganic & Medicinal Chemistry Letters 20, 74447449.CrossRefGoogle ScholarPubMed
Berná, L, Rodriguez, M, Chiribao, ML, Parodi-Talice, A, Pita, S, Rijo, G, Alvarez-Valin, F and Robello, C (2018) Expanding an expanded genome: long-read sequencing of Trypanosoma cruzi. Microbial Genomics 4, 119. doi: https://doi.org/10.1099/mgen.0.000177CrossRefGoogle ScholarPubMed
Brady, PN, Goel, A and Johnson, MA (2018) Poly(ADP-ribose) polymerases in host-pathogen interactions, inflammation, and immunity. Microbiology and Molecular Biology Reviews 83, 148.Google ScholarPubMed
Buckner, FS, Verlinde, CL, La Flamme, AC and Van Voorhis, WC (1996) Efficient technique for screening drugs for activity against Trypanosoma cruzi using parasites expressing b-galactosidase. Microbiology 40, 25922597.Google Scholar
Burleigh, BA and Woolsey, AM (2002) Cell signalling and Trypanosoma cruzi invasion. Cellular Microbiology 4, 701711.CrossRefGoogle ScholarPubMed
Chuenkova, MV and PereiraPerrin, M (2009) Trypanosoma cruzi targets Akt in host cells as an intracellular antiapoptotic strategy. Science Signaling 2, ra74.CrossRefGoogle ScholarPubMed
Citarelli, M, Teotia, S and Lamb, RS (2010) Evolutionary history of the poly(ADP-ribose) polymerase gene family in eukaryotes. BMC Evolutionary Biology 10, 308.CrossRefGoogle ScholarPubMed
Croy, HE, Fuller, CN, Giannotti, J, Robinson, P, Foley, AVA, Yamulla, RJ, Cosgriff, S, Greaves, BD, Von Kleeck, RA, An, HH, Powers, CM, Tran, JK, Tocker, AM, Jacob, KD, Davis, BK and Roberts, DM (2016) The poly(ADP-ribose) polymerase enzyme Tankyrase antagonizes activity of the β-catenin destruction complex through ADP-ribosylation of Axin and APC2. Journal of Biological Chemistry 291, 1274712760.CrossRefGoogle ScholarPubMed
De Boeck, G, Forsyth, RG, Praet, M and Hogendoorn, PCW (2009) Telomere-associated proteins: cross-talk between telomere maintenance and telomere-lengthening mechanisms. The Journal of Pathology 217, 327344.CrossRefGoogle ScholarPubMed
de Souza, W, de Carvalho, TMU and Barrias, ES (2010) Review on Trypanosoma cruzi: host cell interaction. International Journal of Cell Biology 2010, 118. doi: https://doi.org/10.1155/2010/295394CrossRefGoogle ScholarPubMed
Fernández Villamil, SH, Baltanás, R, Alonso, GD, Vilchez Larrea, SC, Torres, HN and Flawiá, MM (2008) TcPARP: a DNA damage-dependent poly(ADP-ribose) polymerase from Trypanosoma cruzi. International Journal for Parasitology 38, 277287.CrossRefGoogle ScholarPubMed
Fichera, LE, Albareda, MC, Laucella, SA and Postan, M (2004) Intracellular growth of Trypanosoma cruzi in cardiac myocytes is inhibited by cytokine-induced nitric oxide release. Infection and Immunity 72, 359363.CrossRefGoogle ScholarPubMed
Fonseca Rosestolato, CT, Da Matta Furniel Dutra, J, De Souza, W and Ulisses De Carvalho, TM (2002) Participation of host cell actin filaments during interaction of trypomastigote forms of Trypanosoma cruzi with host cells. Cell Structure and Function 27, 9198.CrossRefGoogle Scholar
Gibson, BA, Conrad, LB, Huang, D and Kraus, WL (2017) Generation and characterization of recombinant antibody-like ADP-ribose binding proteins. Biochemistry 56, 63056316.CrossRefGoogle ScholarPubMed
Haikarainen, T, Koivunen, J, Narwal, M, Venkannagari, H, Obaji, E, Joensuu, P, Pihlajaniemi, T and Lehtiö, L (2013) Para-substituted 2-phenyl-3,4-dihydroquinazolin-4-ones as potent and selective tankyrase inhibitors. ChemMedChem 8, 19781985.CrossRefGoogle ScholarPubMed
Haikarainen, T, Krauss, S and Lehtio, L (2014) Tankyrases: structure, function and therapeutic implications in cancer. Current Pharmaceutical Design 20, 64726488.CrossRefGoogle ScholarPubMed
Haikarainen, T, Waaler, J, Ignatev, A, Nkizinkiko, Y, Venkannagari, H, Obaji, E, Krauss, S and Lehtiö, L (2016) Development and structural analysis of adenosine site binding tankyrase inhibitors. Bioorganic & Medicinal Chemistry Letters 26, 328333.CrossRefGoogle ScholarPubMed
Hsiao, SJ and Smith, S (2008) Tankyrase function at telomeres, spindle poles, and beyond. Biochimie 90, 8392.CrossRefGoogle ScholarPubMed
Jansen, AM, Xavier, SCDC and Roque, ALR (2018) Trypanosoma cruzi transmission in the wild and its most important reservoir hosts in Brazil. Parasites and Vectors 11, 125.CrossRefGoogle ScholarPubMed
Jung, YS and Park, JIL (2020) Wnt signaling in cancer: therapeutic targeting of Wnt signaling beyond β-catenin and the destruction complex. Experimental & Molecular Medicine 52, 183191.CrossRefGoogle ScholarPubMed
Kaminker, PG, Kim, SH, Taylor, RD, Zebarjadian, Y, Funk, WD, Morin, GB, Yaswen, P and Campisi, J (2001) TANK2, a New TRF1-associated poly(ADP-ribose) polymerase, causes rapid induction of cell death upon overexpression. Journal of Biological Chemistry 276, 3589135899.CrossRefGoogle ScholarPubMed
Kim, MK (2018) Novel insight into the function of Tankyrase (review). Oncology Letters 16, 68956902.Google Scholar
Lafon-Hughes, L, Vilchez Larrea, SC, Kun, A and Fernández Villamil, SH (2014) VERO cells harbor a poly-ADP-ribose belt partnering their epithelial adhesion belt. PeerJ 2, e617.CrossRefGoogle ScholarPubMed
Lafon Hughes, LI, Romeo Cardeillac, CJ, Cal Castillo, KB, Vilchez Larrea, SC, Sotelo Sosa, JR, Folle Ungo, GA, Fernández Villamil, SH and Kun González, AE (2017) Poly(ADP-ribosylation) is present in murine sciatic nerve fibers and is altered in a Charcot-Marie-Tooth-1E neurodegenerative model. PeerJ 5, e3318.CrossRefGoogle Scholar
Lehtiö, L, Chi, NW and Krauss, S (2013) Tankyrases as drug targets. FEBS Journal 280, 35763593.CrossRefGoogle ScholarPubMed
Le Loup, G, Pialoux, G and Lescure, FX (2011) Update in treatment of Chagas disease. Current Opinion in Infectious Diseases 24, 428434.CrossRefGoogle ScholarPubMed
Levaot, N, Voytyuk, O, Dimitriou, I, Sircoulomb, F, Chandrakumar, A, Deckert, M, Krzyzanowski, PM, Scotter, A, Gu, S, Janmohamed, S, Cong, F, Simoncic, PD, Ueki, Y, La Rose, J and Rottapel, R (2011) Loss of Tankyrase-mediated destruction of 3BP2 is the underlying pathogenic mechanism of cherubism. Cell 147, 13241339.CrossRefGoogle ScholarPubMed
Li, Z, Yamauchi, Y, Kamakura, M, Murayama, T, Goshima, F, Kimura, H and Nishiyama, Y (2012) Herpes simplex virus requires poly(ADP-ribose) polymerase activity for efficient replication and induces extracellular signal-related kinase-dependent phosphorylation and ICP0-dependent nuclear localization of Tankyrase 1. Journal of Virology 86, 492503.CrossRefGoogle ScholarPubMed
Lüscher, B, Bütepage, M, Eckei, L, Krieg, S, Verheugd, P and Shilton, BH (2018) ADP-ribosylation, a multifaceted posttranslational modification involved in the control of cell physiology in health and disease. Chemical Reviews 118, 10921136.CrossRefGoogle ScholarPubMed
Ma, B and Hottiger, MO (2016) Crosstalk between wnt/β-catenin and NF-κB signaling pathway during inflammation. Frontiers in Immunology 7, 114. doi: https://doi.org/10.3389/fimmu.2016.00378CrossRefGoogle ScholarPubMed
MacDonald, BT, Tamai, K and He, X (2009) Wnt/β-catenin signaling: components, mechanisms, and diseases. Developmental Cell 17, 926.CrossRefGoogle ScholarPubMed
Mariotti, L, Pollock, K and Guettler, S (2017) Regulation of Wnt/β-catenin signalling by tankyrase-dependent poly(ADP-ribosyl)ation and scaffolding. British Journal of Pharmacology 174, 46114636.CrossRefGoogle ScholarPubMed
Martino-Echarri, E, Brocardo, MG, Mills, KM and Henderson, BR (2016) Tankyrase inhibitors stimulate the ability of Tankyrases to bind Axin and drive assembly of β-catenin degradation-competent Axin Puncta. PLoS ONE 11, e0150484.CrossRefGoogle ScholarPubMed
Miettinen, M, Vedantham, M and Pulliainen, AT (2019) Host poly(ADP-ribose) polymerases (PARPs) in acute and chronic bacterial infections. Microbes and Infection 21(10), 423431. https://doi.org/10.1016/j.micinf.2019.06.002CrossRefGoogle ScholarPubMed
Moparthi, L and Koch, S (2019) Wnt signaling in intestinal inflammation. Differentiation 108, 2432.CrossRefGoogle ScholarPubMed
Nkizinkiko, Y, Suneel Kumar, BVS, Jeankumar, VU, Haikarainen, T, Koivunen, J, Madhuri, C, Yogeeswari, P, Venkannagari, H, Obaji, E, Pihlajaniemi, T, Sriram, D and Lehtiö, L (2015) Discovery of potent and selective nonplanar tankyrase inhibiting nicotinamide mimics. Bioorganic & Medicinal Chemistry 23, 41394149.CrossRefGoogle ScholarPubMed
Palazzo, L, Mikoč, A and Ahel, I (2017) ADP-ribosylation: new facets of an ancient modification. FEBS Journal 284, 29322946.CrossRefGoogle ScholarPubMed
Perina, D, Mikoč, A, Ahel, J, Ćetković, H, Žaja, R and Ahel, I (2014) Distribution of protein poly(ADP-ribosyl)ation systems across all domains of life. DNA Repair 23, 416.CrossRefGoogle ScholarPubMed
Pinto, AMT, Sales, PCM, Camargos, ERS and Silva, AM (2011) Tumour necrosis factor (TNF)-mediated NF-κB activation facilitates cellular invasion of non-professional phagocytic epithelial cell lines by Trypanosoma cruzi. Cellular Microbiology 13, 15181529.CrossRefGoogle ScholarPubMed
Plummer, R, Dua, D, Cresti, N, Drew, Y, Stephens, P, Foegh, M, Knudsen, S, Sachdev, P, Mistry, BM, Dixit, V, McGonigle, S, Hall, N, Matijevic, M, McGrath, S and Sarker, D (2020) First-in-human study of the PARP/tankyrase inhibitor E7449 in patients with advanced solid tumours and evaluation of a novel drug-response predictor. British Journal of Cancer 123, 525533.CrossRefGoogle ScholarPubMed
Riffell, JL, Lord, CJ and Ashworth, A (2012) Tankyrase-targeted therapeutics: expanding opportunities in the PARP family. Nature Reviews Drug Discovery 11, 923936.CrossRefGoogle ScholarPubMed
Romano, PS, Cueto, JA, Casassa, AF, Vanrell, MC, Gottlieb, RA and Colombo, MI (2012) Molecular and cellular mechanisms involved in the Trypanosoma cruzi/host cell interplay. IUBMB Life 64, 387396.CrossRefGoogle ScholarPubMed
Roy, S, Liu, F and Arav-Boger, R (2015) Human cytomegalovirus inhibits the PARsylation activity of tankyrase – a potential strategy for suppression of the wnt pathway. Viruses 8, 117. doi: https://doi.org/10.3390/v8010008CrossRefGoogle ScholarPubMed
Santi-Rocca, J, Fernandez-Cortes, F, Chillón-Marinas, C, González-Rubio, M-L, Martin, D, Gironès, N and Fresno, M (2017) A multi-parametric analysis of Trypanosoma cruzi infection: common pathophysiologic patterns beyond extreme heterogeneity of host responses. Scientific Reports 7, 8893.CrossRefGoogle ScholarPubMed
Sbodio, JI, Lodish, HF and Chi, N (2002) Tankyrase-2 oligomerizes with tankyrase-1 and binds to both TRF1 (telomere-repeat-binding factor 1) and IRAP (insulin-responsive aminopeptidase). Biochemical Journal 361, 451459.CrossRefGoogle Scholar
Silva, RR, Mariante, RM, Silva, AA, dos Santos, ALB, Roffê, E, Santiago, H, Gazzinelli, RT and Lannes-Vieira, J (2015) Interferon-gamma promotes infection of astrocytes by Trypanosoma cruzi. PLoS ONE 10, e0118600.CrossRefGoogle ScholarPubMed
Takagi, Y, Akutsu, Y, Doi, M and Furukawa, K (2019) Utilization of proliferable extracellular amastigotes for transient gene expression, drug sensitivity assay, and CRISPR/Cas9-mediated gene knockout in Trypanosoma cruzi. PLoS Neglected Tropical Diseases 13, 121.CrossRefGoogle ScholarPubMed
Tardieux, I, Nathanson, MH and Andrews, NW (1994) Role in host cell invasion of Trypanosoma cruzi-induced cytosolic-free Ca2+transients. Journal of Experimental Medicine 179, 10171022.CrossRefGoogle ScholarPubMed
Thorsell, A-G, Ekblad, T, Karlberg, T, Löw, M, Pinto, AF, Trésaugues, L, Moche, M, Cohen, MS and Schüler, H (2017) Structural basis for potency and promiscuity in poly(ADP-ribose) polymerase (PARP) and Tankyrase inhibitors. Journal of Medicinal Chemistry 60, 12621271.CrossRefGoogle ScholarPubMed
Vilchez Larrea, SC, Alonso, GD, Schlesinger, M, Torres, HN, Flawiá, MM and Fernández Villamil, SH (2011) Poly(ADP-ribose) polymerase plays a differential role in DNA damage-response and cell death pathways in Trypanosoma cruzi. International Journal for Parasitology 41, 405416.CrossRefGoogle Scholar
Vilchez Larrea, SC, Haikarainen, T, Narwal, M, Schlesinger, M, Venkannagari, H, Flawiá, MM, Villamil, SHF and Lehtiö, L (2012) Inhibition of poly(ADP-ribose) polymerase interferes with Trypanosoma cruzi infection and proliferation of the parasite. PLoS ONE 7, e46063.CrossRefGoogle ScholarPubMed
Vilchez Larrea, SC, Schlesinger, M, Kevorkian, ML, Flawiá, MM, Alonso, GD and Fernández Villamil, SH (2013) Host cell poly(ADP-ribose) glycohydrolase is crucial for Trypanosoma cruzi infection cycle. PLoS ONE 8, e67356.CrossRefGoogle ScholarPubMed
Vilchez Larrea, S, Valsecchi, WM, Fernández Villamil, SH and Lafon Hughes, LI (2021) First body of evidence suggesting a role of a tankyrase-binding motif (TBM) of vinculin (VCL) in epithelial cells. PeerJ 9, e11442.CrossRefGoogle Scholar
Volpini, X, Ambrosio, LF, Fozzatti, L, Insfran, C, Stempin, CC, Cervi, L and Motran, CC (2018) Trypanosoma cruzi exploits Wnt signaling pathway to promote its intracellular replication in macrophages. Frontiers in Immunology 9, 112.CrossRefGoogle ScholarPubMed
Wen, JJ, Yin, YW and Garg, NJ (2018) PARP1 depletion improves mitochondrial and heart function in Chagas disease: effects on POLG dependent mtDNA maintenance. PLoS Pathogens 14, 124.CrossRefGoogle ScholarPubMed
Woolsey, AM, Sunwoo, L, Petersen, CA, Brachmann, SM, Cantley, LC and Burleigh, BA (2003) Novel Pl 3-kinase-dependent mechanisms of trypanosome invasion and vacuole maturation. Journal of Cell Science 116, 36113622.CrossRefGoogle Scholar
Xie, B, Zhang, L, Zhao, H, Bai, Q, Fan, Y, Zhu, X, Yu, Y, Li, R, Liang, X, Sun, Q, Li, M and Qiao, J (2018) Poly(ADP-ribose) mediates asymmetric division of mouse oocyte. Cell Research 28, 462475.CrossRefGoogle ScholarPubMed
Yang, E, Tacchelly-Benites, O, Wang, Z, Randall, MP, Tian, A, Benchabane, H, Freemantle, S, Pikielny, C, Tolwinski, NS, Lee, E and Ahmed, Y (2016) Wnt pathway activation by ADP-ribosylation. Nature Communications 7, 11430.CrossRefGoogle ScholarPubMed
Zhang, W, Zhang, H, Wang, N, Zhao, C, Zhang, H, Deng, F, Wu, N, He, Y, Chen, X, Zhang, J, Wen, S, Liao, Z, Zhang, Q, Zhang, Z, Liu, W, Yan, Z, Luu, HH, Haydon, RC, Zhou, L and He, TC (2013) Modulation of β-catenin signaling by the inhibitors of MAP kinase, tyrosine kinase, and PI3-kinase pathways. International Journal of Medical Sciences 10, 18881898.CrossRefGoogle ScholarPubMed
Supplementary material: Image

Lafon-Hughes et al. supplementary material

Lafon-Hughes et al. supplementary material 1

Download Lafon-Hughes et al. supplementary material(Image)
Image 268.3 KB
Supplementary material: Image

Lafon-Hughes et al. supplementary material

Lafon-Hughes et al. supplementary material 2

Download Lafon-Hughes et al. supplementary material(Image)
Image 1 MB
Supplementary material: Image

Lafon-Hughes et al. supplementary material

Lafon-Hughes et al. supplementary material 3

Download Lafon-Hughes et al. supplementary material(Image)
Image 4 MB