Hostname: page-component-5c6d5d7d68-qks25 Total loading time: 0 Render date: 2024-08-14T14:39:39.516Z Has data issue: false hasContentIssue false

Thiamine uptake in isolated schizonts of Eimeria tenella and the inhibitory effects of amprolium

Published online by Cambridge University Press:  06 April 2009

S. James
Affiliation:
Imperial Chemical Industries Ltd, Pharmaceuticals Division, Alderley Park, Macclesfield, Cheshire, SK10 4TG

Summary

The uptake of thiamine by isolated second-generation schizonts of Eimeria tenella and by host intestinal cells was found to consist of two components. One was passive and the other apparently an active process. The kinetic constants of the latter were compared in host (Km = 0·36 μm) and parasite (Km = 0·07 μm) and found to be significantly different. Both systems were competitively inhibited by amprolium but showed different affinities for the drug. (Host Ki = 326 μm; parasite Ki = 7·6 μm). Further differences were observed in schizonts of a drug-resistant line of E. tenella. These findings are discussed in terms of the inhibition of thiamine uptake being the basis of the anticoccidial activity of amprolium.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batzri, S. & Gardner, J. D. (1978). Potassium transport in dispersed mucosal cells from guinea-pig stomach. Biochimica et Biophysica Acta 508, 328–38.CrossRefGoogle ScholarPubMed
Chapman, H. D. (1978). Drug resistance in coccidia. In Avian Coccidiosis (ed. Long, P. L., Boorman, K. N. and Freeman, B. M.), pp. 375386. Edinburgh: British Poultry Science Ltd.Google Scholar
Ferrari, G., Rindi, G. & D'Andrea, G. (1978). Action of inorganic phosphate on thiamine transport by rat everted jejunal sacs. Pflügers Archiv 367, 4753.CrossRefGoogle Scholar
Ferrari, G., Ventura, U. & Rindi, G. (1971). The Na+ dependence of thiamine intestinal transport in vitro. Life Sciences 10, 6775.CrossRefGoogle ScholarPubMed
Franklin, T. J. & Snow, G. A. (1975). Biochemistry of Antimicrobial Action. London: Chapman and Hall.CrossRefGoogle Scholar
Hoyumpa, A. M., Middleton, H. M., Wilson, F. A. & Schenker, S. (1975). Thiamine transport across the rat intestine. Gastroenterology 68, 1218–27.CrossRefGoogle ScholarPubMed
James, S. (1980). Isolation of second generation schizonts of avian coccidia and their use in biochemical investigations. Parasitology 80, 311322.CrossRefGoogle Scholar
Kawaski, T., Miyata, I., Esaki, K. & Nose, Y. (1969). Thiamine uptake in E. coli: general properties. Archives of Biochemistry and Biophysics 131, 223–30.CrossRefGoogle Scholar
Kimmich, G. A. (1970). Preparation and properties of mucosal epithelial cells isolated from the small intestine of the chicken. Biochemistry 9, 3659–68.CrossRefGoogle ScholarPubMed
Komai, T. & Shindo, H. (1972). Metabolic fate and mechanism of action of chloroethylthiamine. Journal of Vitaminology 18, 5562.CrossRefGoogle ScholarPubMed
Matsuzawa, T. (1978). Studies on the mode of action of beclotiamine on Eimeria tenella. Paraaitology 77, 235–41.CrossRefGoogle ScholarPubMed
Menon, I. A. & Søgnen, E. (1971). Amprolium and transport of thiamine into intestinal cells. Acta Veterinaria Scandinavica 12, 111–13.Google ScholarPubMed
Michal, G. (1978). Determination of Michaelis constants and inhibitor constants. In Principles of Enzymatic Analysis (ed. Bergmeyer, H. U. and Gawehn, K.), pp. 2940. New York: Verlag Chemie.Google Scholar
Neujahr, H. Y. (1966). Transport of B-vitaimns in micro-organisms. Acta Chemica Scandinavica 20, 771–85.CrossRefGoogle Scholar
Polin, D., Wynosky, E. R. & Porter, C. C. (1962). Amprolium. On thiamine absorption in vivo from ligated segments of digestive tract in chicks. Federation Proceedings 21, 261.Google Scholar
Polin, D., Wynosky, E. R. & Porter, C. C. (1963). Amprolium: studies on the absorption of amprolium and thiamine in laying hens. Poultry Science 42, 1057–61.CrossRefGoogle Scholar
Rindi, G. & Ventura, U. (1967). Phosphorylation and uphill transport of thiamine in vitro. Experientia 23, 175–6.CrossRefGoogle ScholarPubMed
Rindi, G. & Ventura, U. (1972). Thiamine intestinal transport. Physiological Reviews 52, 821–7.CrossRefGoogle ScholarPubMed
Ryley, J. F. & Betts, M. J. (1973). Chemotherapy of chicken coccidiosis. Advances in Pharmacology and Chemotherapy 11, 221–93.CrossRefGoogle ScholarPubMed
Ryley, J. F. & Wilson, R. G. (1976). Laboratory studies with some older anticoccidials. Parasitology 73, 287309.CrossRefGoogle ScholarPubMed
Sharma, S. K. & Quastel, J. H. (1965). Transport and metabolism of thiamine in rat brain cortex in vitro. Biochemical Journal 94, 790800.CrossRefGoogle ScholarPubMed
Shindo, H. & Komai, T. (1972). Metabolic fate and mechanism of action of chloroethylthiamine. Journal of Vitaminology 18, 41–7.CrossRefGoogle ScholarPubMed
Wang, C. C. (1976). Inhibition of respiration of Eimeria tenella by quinolone coccidiostats. Biochemical Pharmacology 25, 343–9.CrossRefGoogle ScholarPubMed
Wang, C. C. (1978). Biochemical and nutritional aspects of coccidia. In Avian Coccidiosis (ed. Long, P. L., Boorman, K. N. and Freeman, B. M.), pp. 135184. Edinburgh: British Poultry Science Ltd.Google Scholar
Wang, C. C., Stotish, R. L. & Poe, M. (1975). Dihydrofolate reductase of Eimeria tenella: rationalisation of chemotherapeutic efficacy of pyrimethamine. Journal of Protozoology 22, 568–72.CrossRefGoogle Scholar
Warren, E. W. (1968). Vitamin requirements of the coccidia of the chicken. Paraaitology 58, 137–48.CrossRefGoogle ScholarPubMed