Hostname: page-component-84b7d79bbc-2l2gl Total loading time: 0 Render date: 2024-07-26T03:11:57.640Z Has data issue: false hasContentIssue false

The uptake and incorporation of nucleosides into normal erythrocytes and erythrocytes containing Plasmodium berghei

Published online by Cambridge University Press:  06 April 2009

K. D. Neame
Affiliation:
Departments of Physiology and Parasitology, University of Liverpool
P. A. Brownbill
Affiliation:
Departments of Physiology and Parasitology, University of Liverpool
C. A. Homewood
Affiliation:
Departments of Physiology and Parasitology, University of Liverpool

Extract

Normal mouse erythrocytes and erythrocytes containing Plasmodium berghei were incubated for 1 h in a medium containing either adenosine, guanosine, cytidine or thymidine labelled with 14C or 3H. The purine nucleosides, adenosine and guanosine, but not the pyrimidine nucleosides, cytidine and thymidine, were incorporated into the nucleic acid of the parasite–host cell complex. The concentration achieved by all four nucleosides in both normal and parasitized cells was at least as high as that in the suspending medium, showing that not only purines but also pyrimidines enter the parasitized erythrocyte.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baggaley, V. C. & Atkinson, E. M. (1972). Use of CF 12 columns for preparations of DNA from rodent malarias. Transactions of the Royal Society of Tropical Medicine and Hygiene 66, 45.CrossRefGoogle ScholarPubMed
Bishop, C. (1964). Overall red cell metabolism. In The Red Blood Cell (ed. Bishop, C. and Surgenor, D. M.), pp. 147–88. New York: Academic Press.Google Scholar
Büngener, W. & Nielsen, G. (1967). Nukleinsäurenstoffwechsel bei experimenteller Malaria. 1. Untersuchungen über den Einbau von Thymidin, Uridin und Adenosin in Malaria-parasiten (Plasmodium berghei und Plasmodium vinckei). Zeitschrift für Tropenmedizin und Parasitologie 18, 456–62.Google ScholarPubMed
Conklin, K. A., Chou, S. A., Siddiqui, W. A. & Schnell, J. V. (1973). DNA and RNA synthesis by intraerythrocytic stages of Plasmodium knowlesi. Journal of Protozoology 20, 683–8.CrossRefGoogle ScholarPubMed
Davies, E. E. & Howells, R. E. (1973). Uptake of 3H-adenosine and 3H-thymidine by oöcysts of P. berghei berghei. Transactions of the Royal Society of Tropical Medicine and Hygiene 67, 20.CrossRefGoogle ScholarPubMed
Fulton, J. D. & Spooner, D. F. (1956). The in vitro respiratory metabolism of erythrocytic forms of P. berghei. Experimental Parasitology 5, 5978.CrossRefGoogle Scholar
Gutteridge, W. E. & Trigg, P. I. (1970). Incorporation of radioactive precursors into DNA and RNA of Plasmodium knowlesi in vitro. Journal of Protozoology 17, 8996.CrossRefGoogle ScholarPubMed
Krebs, H. A. & Eggleston, L. V. (1940). The oxidation of pyruvate in pigeon breast muscle. Biochemical Journal 34, 442–59.CrossRefGoogle ScholarPubMed
Lieu, T. S., Hudson, R. A., Brown, R. K. & White, B. C. (1971). Transport of pyrimidine nucleosides across human erythrocyte membranes. Biochimica et Biophysica Acta 241, 884–93.CrossRefGoogle ScholarPubMed
Lowy, B. A., Jaffé, E. R., Vanderhoff, G. A., Crook, L. & London, I. M. (1958). The metabolism of purine nucleosides by the human erythrocyte in vitro. Journal of Biological Chemistry 230, 409–19.CrossRefGoogle Scholar
Neame, K. D. (1962). Uptake of L-histidine, i-proline, L-tyrosine and L-ornithine by brain, intestinal mucosa, testis, kidney, spleen, liver, heart muscle, skeletal muscle and erythrocytes of the rat in vitro. Journal of Physiology 162, 112.CrossRefGoogle ScholarPubMed
Neame, K. D. & Homewood, C. A. (1974 a). Inexpensive liquid scintillation counting of aqueous samples. Analytical Biochemistry 57, 623–7.CrossRefGoogle ScholarPubMed
Neame, K. D. & Homewood, C. A. (1974 b). Introduction to Liquid Scintillation Counting. London: Butterworths. (In the Press.)Google Scholar
Oliver, J. M. & Paterson, A. R. P. (1971). Nucleoside transport. I. A mediated process in human erythrocytes. Canadian Journal of Biochemistry 49, 262–70.CrossRefGoogle Scholar
Roos, H. & Pfleger, K. (1972). Kinetics of adenosine uptake by erythrocytes, and the influence of dipyridamole. Molecular Pharmacology 8, 417–25.Google ScholarPubMed
Schneider, W. C. (1945). Phosphorus compounds in animal tissues. I. Extraction and estimation of desoxypentose nucleic acid and of pentose nucleic acid. Journal of Biological Chemistry 161, 293303.CrossRefGoogle ScholarPubMed
Smith, I. (1969). Chromatographic and Electrophoretic Techniques, 3rd ed., vol. 1. London: Heinemann.Google Scholar
Theakston, R. D. G., Ali, S. N. & Moore, G. A. (1972). Electron microscope autoradio-graphic studies on the effect of chloroquine on the uptake of tritiated nucleosides and methionine by Plasmodium berghei. Annals of Tropical Medicine and Parasitology 66, 295302.CrossRefGoogle Scholar
van Dyke, K., Tremblay, G. C., Lantz, C. H. & Szustkiewicz, C. (1970). The source of purines and pyrimidines in Plasmodium berghei. American Journal of Tropical Medicine and Hygiene 19, 202–8.CrossRefGoogle ScholarPubMed
Walsh, C. J. & Sherman, I. W. (1968). Purine and pyrimidine synthesis by the avian malaria parasite, Plasmodium lophurae. Journal of Protozoology 15, 763–70.CrossRefGoogle ScholarPubMed
Warhurst, D. C. & Robinson, B. L. (1971). Cytotoxic agents and haemozoin pigment in malaria parasites. Life Sciences 10 (Part II), 755–60.CrossRefGoogle ScholarPubMed
Whitfeld, P. R. (1953). Studies on the nucleic acids of the malaria parasite, Plasmodium berghei (Vincke & Lips). Australian Journal of Biological Sciences 6, 234–43.CrossRefGoogle ScholarPubMed